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Abstract

A common requirement for all lunar and planetary missions is the extremely
accurate determination of the trajectory of a spacecrafi. The Double Precision
Trajectory Program (DPTRA]) developed by JPL has proved to be a very
accurate and dependable tool for the computation of interplanetary trajectories
during the Mariner missions in 1969, This report describes the mathematical

models that arc used in DPTRA] at present, with emphasis on the development
of the equations. -
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Design and Implementation of Models for the Double

Precision Trajectory Program (DPTRAJ)

l. Introduction

An important factor in determining high-precision
interplanetary trajectories is the computation and sub-
sequent integration of the acceleration of a spacecraft
that is moving in the solar system and is subject to a
variety of forces. The forces acting upon the spacecraft
determine its acceleration according to Newton’s second
law; therefore, knowledge of the forces implies knowledge
of the acceleration of the spacecraft. Invegration of the
total acceleration in some convenient frame of reference
cstablishes the ephemeris of the spacecraft, and hence
its trajectory.

The only known method for describing the above-
mentioned forces is that of mathematical models; i.e., one
ot more equations describing certain physical phenvmena.,
It should be clear that every model reflects reality only
to a certain degrce. Many of the forces are not well
known at present (e.g., the effect of the harmonic cu-
efficients of Mars) and others are so small that they are
negligible; therefore, only a relatively small number of
models describing forces acting upon the spacecraft cxist
at the present time, and most of these are subject tc
improvement because of new knowledge acquircd in
varjous fields of the physical sciences.
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Because the total acc :leration of a spacecraft cannot
be integrated in closed form, recourse must be taken to
numerical methods. At present, the equations of motion
of a spacecraft are integrated by a so-called second-sum
numerical-integration scheme relative to some central
body (Cowell method).

" The equations of motion are solved for the spacecraft
only, and ignore the negligible perturbations of the space-
craft on celestial bodies (i.e., on the sun, moon, and
planets); hence, it is sufficient to obtain positions and
velocities of these bodies in the form of planetary and
lunar ephemerides in some onvenient reference frame.
The coordinates have been traditionally referred to the
Cartesian system, based on the earth mean equator and
equinox of 1950.0; thus, the ephemerides of the spacecraft
and the bodies are uniformly expressed in this system.
The collection of the ephemerides is usually done on a
magnetic tape—the so-called ephemeris tape.

To obtain information about the spacecraft or any of
the bodies in some other reference frame, an appropriate
transformation must be applied to the 1930.0 frame.
It should be noted that many of the numerical values of
angles and related information given in Section V are
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subject to revision and should, therefore, not be con-
sidered final.

Il. Time and Coordinate Transformations in
General

This section describes time transformations and the
transformation of the input spacecraft initial conditions
(injection conditions)—which may be expressed in one of
many systems—to the earth mean equator and equinox
of 1950.0 Cartesian coordinates. Three types of coordirate
transformations will be discussed: conversion, rotation,
and translation.

A. Coordinate Conversions

There are five basic types of coordinate conversions,
as follows:

From To

Spherical (R,¢,0,V)Y’o)
Cartesian (X,Y,Z,X,Y,Z)

Cartesian (X,Y,Z,J'(,l.f,z)
Spherical (R,$,6,V,y,0)

Classical orbital Cartesian (X,Y,Z,J'(,l},i)
(a,0,f,0,0,a1)
Cartesian (X,Y,Z,f(,)",i) Classical orbital
(a,¢,i,0,0,4at)
Asymptotic
s,RI'C,,o,,H, .o s
(. wlu) Cartesian (X,Y,Z,X,Y,Z)
Pseudo-asymptotic
(2L7I{7P’C3)¢A)Hhaw)

B. Rotdtions

The Cartesian elements can be expressed in any of the
coordinate systems described below, and can be trans-
formed from one systemn to another.!

1, Space-fixed. The x-axis is in the direction of the
ascending node between the orbit of the planet and its
equatorial plane. The equinox can be that of 1950.0 or
any later time. The z-axis is normal to the specified plane
in the same direction as the angular-momentum vector.
The y-axis completes the right-handed coordinate system.

Witt, |. W., JPL internal document, Oct. 20, 1968.

The coordinate systeins are:
(1) Earth mean or true equator.

(2) Earth mean orbit (defined by the ascending node
of the earth orbit on the earth. mean equatorial
plane).

(3) Earth true orbit (defined by the ascending node
of the earth orbit on the earth true equatorial
plane).

(4) Mars mean and true orbits.

(5) Mars mean equator (computed from Mars mean
orbit).

(6) Mars true equator (computed from Mars true
orbit).

(7) Moon true equator.

2. Body-fixed. The xy-plane is the true of date equa-
torial plane of the planet. The x-axis points toward the
prime meridian of the planet, the z-axis points to the north
celestial pole, and the y-axis completes the right-handed
coordinate system. Three body-fixed systems will be
described—the systems for earth, Mars, and the moon.

The transformations will be discussed in the following
sequence:
(1) Time transformations.

(2) Coordinate types of transformation (i.e., spherical
to Cartesian, ete.).

(3) Earth-related transformations.
(4) Mars-related transformations.
(5) Moon-related transformations.

(6) Translation of centers.

I, Systems of Time

The familiar time that we keep on our clocks and
adjust occasionally by means of signals sent out from
Naval observatories is known to be subject to irregular
changes; i.e., time, which is generally considered the
uniform argument in all applications, is actually not a
single-invariant quantity. This fact may be disregarded
for most purposes of measuring time; in orbit and trajec-
tory computations, however, the nonuniformity of time
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must be taken into account. In fact, to determine any
orbit from earth-based observatic.s, it is necessary to
have at least two independent and quite distinct forms
of time; namely, sidereal time for the observer and
ephemeris time for the calculation of ephemerides.

A. Tropical Year and Ephemeris Time?

The standard for time measurements is the tropical
year, which is the time required by the sun to make an
apparent revolution of the ecliptic from vernal equinox to
vernal equinox; however, this time interval is not constant
because of the precession of the equinoxes. Therefore,
the reference year was arbitrarily chosen as the instan-
taneous tropical year at 1900; in practice, it is defined in
terms of the angular rate of the mean sun of 1900.0 as
determined by observation. The adopted value of this
rate is 129,602,768.13 s/Julian century of 36,525 days. In
this context, the day is expressed in terms of an inde-
pendent parameter that appears in the theories of the
motion of bodies in the solar system. This parameter is
called ephemeris time (E.T.). The number of ephemeris
days in the tropical year 1900.0 is

36,525
129,602,768.13

= 365.24219879 ephemeris days (1)

1 tropical year = 360 X 60 X 60 X

Ephemeris time is the uniform measure of time that is
the independent variable for the equations of motion,
and hence it is the argument for the ephemerides of the
planets, the moon, and the spacecraft.

B. Atomic Time

Atomic time (A.1) (Ref. 1, p. 36) is obtained from
oscillatiuns of the U.S, Frequency Standard located at
Boulder, Colo. The value of A.1 was set equal to UT2
(see below) on January 1, 1958, at 0°0m0* UT2. Atomic
time increases at the rate of 1 s/9,192,631,770 cycles of
the cesium atom, which is the best current estimate of
the length of the ephemeris second.

C. Universal Time

Universal Time (UT) is the precise measure of time
that is used as the busis for all civil time-keeping, and is
defined (Ref. 2, p. 73) as 12 h plus the Greenwich hour

2Witt, J. W., JPL internal document, Oct. 20, 1968,
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angle of a point on the true equator whose right ascension
measured from the mean equinox of date is

R.(UT) = 183845836 + 8,640,184:542 T,; + 020929 T2
@)

where T'; is the number of Julian centuries of 36,525 days
of UT elasped since 1900 Jan 0, 12 h UT. The hour angle
of this point is 8y {Greenwich hour angle of mean equi-
nox of date). Hence, UT is a function only of 8,:

6 =UT + R(UT) +12h0< 6, UT<2h

Universal Time is obtained from meridian transits
of stars by the U.S. Naval Observatory. At the instant of
observation, the right ascension of the observing station
is equal to that of the observed star relative to the true
equator and equinox of date. Subtraction of the east
longitude of the observing station gives the true Green-
wich sidereal time ¢ at the instant of observation:

6 = true Greenwich sidereal time (Greenwich
hour angle of true equinox of date) (3)

Each observing station has a neminal value of longi-
tude used for computing UT; if this nominal value is
used, the resulting UT is labeled UTO. Because of wan-
dering of the pole, the latitude and longitude of a fixed
point on the earth are a function of time. If the true
longitude of the observing station at the observation time
is used, the resulting UT is labeled UT1. When the pre-
dictable seasonal fluctuations of UT1 are removed, the
resulting time is labeled UT2.

D. Transformation Betweéen Tim2 Scales®

The most common problem is to find the E.T. for
ephemeris consultation. The transformation between A.1
time and E.T. is given by

Afcesium
ET. — Al =aTwu ~ (T~ Ts) g5 19‘5 63'L1'7"70'

+ 0.829() + a)10-*sin E (4)

3Witt, J. W., JPL internal document, Oct. 20, 1968.




where

AT 45 = time difference (in seconds) between A.l
and E.T. at 1958.0 (solve-for parameter)

T= Al or ET, in seconds, past January 1,
1950, 0»Q=Qs

T = 252 460 800.0 (i.e,, January 1, 1958, 000 in
seconds past January 1, 1950, 0v0=0¢)

Afcesium = change in cesium frequency (a solve-for
parameter)

The last texm of Eg. (4) accounts for general relativistic
effects:

a = 1 or —1 depending on whether or not it is
desired to include general relativistic effects
of the rotation of the geocenter about the
earth-moon barycenter

E = eccentric anomaly of the heliocentric orbit
of the earth-monon barycenter

For an accuracy of 10~ s in the value of the periodic
term (see Ref. 1, p. 37), the eccentric anomaly E may be
computed from the following approximate solution to
Kepler’s equation:

E~M+esinM

where

e = eccentricity of heliocentric orbit of eartt-moon
barycenter (0.01672)

M = 328°2832”77 + 129,596,579710 T'

where T is the number of Julian centuries of 36,525 days
of E.T. elapsed since 1900 Jan 0, 12 h E.T.

The first term of Eq. (4) arises because A.1 was set
equal to UT2 at the beginning of 1958. The second term
accounts for the difference between the lengths of the
E.T. and A.1 seconds (if Afcesium is nonzero). The periodic
term arises, as mentioned above, from general relativity,
It accounts for the fact that A.l1 time is a measure of
proper time observed on earth, and that E.T. is a measure

of coordinate time in the heliocentric (strictly barycentric)
space-time frame of reference,

The remaining transformations between the various

time scales are specified by linear or quadratic functions
of (T ~1t):

Al~UTC=d+e(T —1%) (5)
Al —-UTl=f+g(T ~t)+ h(T —t)? (6)
where

d,e,f,g,h,t = given parameters

UTC = time scale (see Glossary)

IV. Coordinate Type Transformations

A. Spherical to Cartesian Coordinates Transformation*

In spherical coordinates, position and velocity are given
by the triples R,$,6 and V,y,0, respectively. Given these
two triples, it is required to compute X,Y,Z and X,Y,Z.
From Fig. 1 and elementary trigonometry, it follows that

X R cos ¢ cos 6
Y | =| Rcos¢sing O
Z Rsing

4Witt, J. W., JPL internal document, Oct. 20, 1968.
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Fig. 1. Spherical coordinates
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; C = CC,
cos¢ 0 sing cosé sing O
= 0 1 0 —sind cos#@
—sing 0 cos¢ 0 0 1/
cos ¢ cos cos¢sing  sing
= ~sing cos 6 0 9)
—sin¢ cos 8 —sin¢sing cos¢
52
AT where

Fig. 2. Enlargement of the H-plane
C, = matrix that rotates XYZ frame ahout Z-axis by

If the velocity in the S,,5,,5; reference frame (Fig. 2) angle ¢; this yields X'Y'Z system

is computed, the velocity components X,,Y,,Z, are given

by €, = matrix that rotates X’Y’Z frame about Y’-axis by

angle ¢; this yields §,,S,,S; system

)_(‘ Vsiny Hence, the velocity components X,Y,Z in the XYZ system
Y, | =| Vcosysing (8)  are given by
Z, Vcosycoso

. X X,

The rotation matrix relating the XYZ system to the v\ —caf v 10
S1,5:,9; system consists of the product of two rotation Y - N (10)
matrices: Z Z,

Because C is an orthogonal matrix, C* = €7; and from Egs. (9) and (10), it follows that
X cospcosé —sind  —singcosd Vsiny
Y | = cosg¢sing cos§ —singsind Vcosysing (11)
Z sin ¢ 0 cos ¢ Vcosycoso

Equations (7) and (11) give position (X,Y,Z) and velocity ()2,)}2) in Cartesian coordinates.
B. Cartesian to Spherical Coordinares Transformation

Given X,Y,Z and }'(,l.f',i, the problem is to compute the spherical coordinates R,$,6 and V,y,s (this is the inverse of
the transformation described in Section IV-A). From Fig. 1, it is easily seen that

R=(X*+Y?+42Z5)"
¢ = sin™? (—g), —90deg < ¢ <90 deg

6 = tan~' (71;.) 0deg < 6 < 360 deg

JPL TECHNICAL MEMORANDUM 33-451 5




From Eq. (10), there immediately follows

X, X
Y, |=¢c ¥ (13)
Z Z
where C is given by Eq. (9). Then (see Fig. 2),
V= (X:+Yi+ 20
= sin (Xs -H0deg <y<90d
Yy =S ) Jdeg S y=s cg (14)

o = tan™! (%) , 0 deg < ¢ < 360 deg

8

Equations (12) through (14) express R,4,0 and V,y,¢ in
terms of X,Y,Z and X,Y,Z.

C. Classical to Cartesian Coordinates Transformation

Given At, i, Q, o, a, ¢, and x, where

(t — T) = At = time of epoch minus time of perifocal
passage

i = angle of inclination
Q = longitude of ascending node
« = argument of perifocus

@ = semimajor axis (in case of a parabolic
orbit, pericentron distance ¢ must be
supplied instead of a)

= eccentricity

= gravitational constant

cosw Ssinw O 1 0
S=] —sine cosw O 0 cos {
0 0 1 0 —sini

(c0s wcos @ ~ sin w cos § sin 02)
=] (—sin wcos Q —cos wcosisin Q)

(sin @ sin{)

(coswsinQ + sin w cos i cos )

(—sin wsinQ +cos 0 coswcos 1)

the problem is to find the inertial coordinates X,Y,Z and
the velocity components X,Y,Z as a’function of time for
either a hyperbolic, an elliptic, or a parabolic orbit. The
orbital elements are shown in Fig. 3.

Kepler’s third law states that the orbital period P is
computed according to

(15)

The mean motion n is then given by

W
n= % = (—(’%—) rad/sec —

Kepler’s equation is given for elliptic orbits by
M=nAt=E —esinE

(17)

where

M = mean anomaly
e = eccentricity
E = eccentric anomaly v
Differentiating M with respect to time, one obtains
M=n (18)

The rotation matrix § = 8,+8S,+8, for rotating the
XYZ system into the orbital plane is

0 cosQ sinQ 0
sin i —sinQ cosQ O
cos § 0 0 1

(sin wsin )
(cos wsin) (19)

(—sinicos Q) (cos 1)

JPL TECHNICAL MEMORANDUM 33-451
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\
SPACECRAFT
Y

Fig. 3. Orbital elements

where

S; = matrix for rotating through angle o
S. = matrix for rotating through angle

S, = matrix for rotating through angle @

The orbital rectangular coordinates (Xu,lw,2«) are then
transformed to Cartesian position and velocity coordi-
nates (X,Y,Z) and (X,Y,Z), respectively, in the reference

plane by

Xo
Y |=87| vy (20)
Z o
and
X %
Y =87 ¢, (1)
7 %o

where 87 is the transpose of matrix S given by Eq. (19).

Because in all three cases (elliptic, hyperbolic, and
parabolic) the orbit is planar, it is clear that

Zw=10
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Fig. 4. Eccentric and true anomalies

‘ and, therefore, also

Za=0
Hence, it suffices to compute %u, Yu, %u, and Yo

1. Elliptic orbit. From the geometry of Fig. 4, it is
obvious that

oSy = X
= qcos E —ae

that is,

2w =a(cosE — e) (22)

where E is the eccentric anomaly, which is defined in
Fig. 4.

Now, in polar coordinates, the equation of an ellipse is

given by

r=a(l —ecosE)

where e is the eccentricity. Then

2 — gt g2
Yo =T e

= a*(l — e?)sin’E

ook

4

-

O

Rl T RN N N - ,
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and

Yo = a(l — e*)"sinE
= rsiny (23)

where v is the true anomaly (see Fig. 4).
From Egs. (22) and (23), it follows that

%o = —aE sin E
Jo=a(l — e)* E cos E (24)

The value of E is found from . ...
M=E-—esinE (25)

by use of some iterative procedure; e.g., regula falsi (see
Appendix C),

The time derivative of Eq. (25) yields

. M
E= 1—ecosE
_ n
" T1—ecosE (26)
by use of Eq. (18). Then
. _ —ansinE

T 1—ecosE

. _an(l—e*)"cosE
- 1 —ecosE

(27)

2. Hyperbolic orbit. To find x, and y. for a hyperbolic
path, recourse must be taken to hyperbolic functions
because a assumes negative values. In analogy to the
eccentric anomaly E of the ellipse, it is possible to define
a new variable for hyperbolic motion as

_ 2 X area SPC

F po

where the area SPC is defined in Fig. 5. Corresponding .

to the auxiliary circle in the case of an ellipse, there is
an auxiliary hyperbola which is rectangular with the

Yo

N

\\ (KD ' Ye)

HYPERBOLIC
TRAJECTORY —~1

SPACECRAFT — 7 //

(¢ D~ P C x

-

AUXILIARY
HYPERBOLA

( u)—'.

_—

Fig. 5. A hyperbolic orbit

same semimajor axis and the same center as the hyper-
bolic trajectory. From the definition of hyperbolic func-
tions,

DC = —acosh F

so that

% =0D=q — (—acoshF + a)

=a(l—e)+acoshF —a

or

%w = a(cosh F — ¢) (28)
Also,

Xo = I'COS ¥

(see Fig. 5); and, by substitution of this result into the
general equation of a conic,

re 1+ ecosy
it follows that
r+exe=1p

=a(l—e?)
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(see Eq. B-7, Appendix B). Equations (28) and (29) and Eqs. (32) and (33) give the
position and velocity, respectively, of a spacecraft on a
hyperbolic orbit.

Substituting for x. from Eq. (28), one obtains
3. Pargbolic orbit. In the case of parabolic orbits

(Fig. 6), a = 0, e = 1, and Kepler’s equation is indeter-
minate. Therefore, a new relationship between position
and time must be sought. The equation of a conic, special-

ized to the parabola, is given by

r = a(l — e cosh F)

Because

/
: r?=x2 +y?

r= =
1—ecosvy 1—cosv

Yo is given by the expression
Yo = —a(e?* — 1)*sinh F (29)
because p = q (1 + e) = 2q for the parabola, where v is
the true anomaly.

The mean anomaly for hyperbolic motion is defined by
By the haif-angle formulas, Eq. (34) becomes

M, =esibhF—F (30)
S [T I TS I
=n(t—T
My=n(t—T) From a derivation in Ref. 3 (pp. 112-113), -
hence, e
P

M H=n"n
where u is the gravitational coefficient of the reference

F is computed from Eq. (30) by use of an iterative pro-
cedure; e.g., regula falsi (see Appendix C). body, km?®/s*. Thus, ,
Ve = (9,q)% = 1% =
Differentiating Egs. (28) and (29) with respect to time, (kp) (2u)
one obtains q° l:l + tan? (_;.)] [see* (.%.)]Z_:

%= aFsinh F
. . (31) .
Yo = —a(e* — 1) F cosh F Yo -
Fis computed from Eq. (30) as ’
F=ohF=1 ! 3
; k|
—-—— " v o 3
" ecoshF —1 v I ) ; |
F w : :
Hence, f <
e g ;
. i hF L]
o = ezzss}:l;‘ -1 (32) / X
é
. _ —an(e* —1)" cosh F g
Yo = ecoshF — 1 (33) Fig. 6. A parabolic orbit
9
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Upon simplification:

Ya
(-2—1:];-) dt = I:l + tan? (-—;—)} [scc2 (%)] d (—;—)

Integration of Eq. (36) between T and.t.yields

171 Ya

() o= -
1
tan 5 ) +gtan’ |3 ) (37)

Rearrangement of Eq. (37) yields

prAt=gq [(24)“ tan (%)]
+5lemam(5)] @

Letting D = (2q)* tan (v/2), one obtains from Eq. (38)

1

'y D? + gD = p*at  (Barker’s equation) (39)

Equation (39) may be solved for D. Then

2
Xo = q — % (40)
= (29)* D (41)
and
iw = _Db
'A
=-D—tp (12)
itz
where D is computed from Eq. (39)
Ju = (29)% D
2 a
( qP)D_ (43)
it

10

D. Cartesian to Classical Coordinates Transformation

Given the inertial coordinates X,Y,Z and velocity
components X,Y,Z as a function of timé for either an
elliptic, hyperbolic, or parabolic orbit, the problem is to
find a, ¢, 1, Q, o, and At = ¢t — T, where the last six
quantities are defined as in Section IV-C.

Given the vis-viva integral

V= ('—;' - %’) (44)

there follows for the semimajor axis of the conic

uR

= 2;;—sz

where

R= (X +Y* + Z»
o= (X2 + Y2+ 2oy

The eccentricity e of the conic is given by the standard

formula
B _p v =
= ( T) (46)

where p is the semilatus rectum (see Eq. 476, Section X-B).

Now p is given by the formula (see Appendix B)

Wb h?

* ®

p:

where h is the angular-momentum vector per unit mass
and b = | h|. Because h is in the direction of the vector
R X v, the components of h are as follows: .

h; = Yé - ZY

h, = ZX — XZ
Since 1
hz R2p2 — (R . v)z 1

et
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onc obtains

R2 p? - R.vz
p= (R-v)

p (47)
By use of Eq. (44), Eq. (47) becomes
_ _ i{_ _ (Rev)?
p=R (2 n ) - (48)

Substitution of this expression for p into Eq. (46) yields

e= [1 + —?(ﬁ - 2) + (R’;)ﬂ]w (49)

a

Figure 7 shows the or%i,t of a spacecraft. On this figure,

it should be notenbthat 1& normal tp the orbital plane.
The unit vectors N, ﬁ, ﬁ, s 0, and V are in the orbital
plane and

A AA AA A
NIMPLQU.LYV

A
where U =R/R. From the definition of h, and from
Fig. 7, it follows that

&=ﬁ=-‘,‘7 (50)

Yw

=

SPACECRAFT

Fig. 7. Orhit of a spacecraft
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Now it can easily be scen that the inclination of the orbital
plane to the reference plane is

i = cos™ (W,)
Hence,

h,
= costt (T) , 0deg<i<180deg  (51)

A
The unit vector N along the line of the ascending node
is given by its components

—_ WV
Ne= “wrr W
W,
M= wrrwar
N.=0

The longitude 42 of the ascending node is, therefore,

Q = tan- (%’-—) , 0Odeg <0< 360deg (52)

z

The unit vector ﬁ, which points in the direction of the
spacecraft, is given by

-2

To determine o (the argument of perifocus), the argu-
ment of the latitude u, and the true anomaly » are needed
(i.e., 4, is the angle between R and 0 and v is the angle
between P and U). To compute u,, the right-hand set for
W and N is completed by the cross product

=% xR
Since
0+ ft = cos (90 — uo) = sinue
and

ﬁ‘ﬁ=cosuo

it foliows that

A A
U, = tan! (—Uﬁ%') ,  Ddeg < u, < 360deg (53)

"

[

Lt T “‘i‘?‘mil 2wl

s




The argument of perifocus is, of course, not defined for
e = (; in this case, let v = u,.

If e540, one obtains from the general equation of a
conic

1+ ecosv
the expression
ecosy= % -1
and, hence,
1/p ) -
Cosy = ?(f - 1) (54)

Direct differentiation of Eq. (54) with v and R as
variables yields

1 pR 1. /p\*® .
i === — - 5
siny = — eR(p.) (55)
because
pp = (R?9)?

From Eqgs. (54) and (55), it follows that

A(E)
= tan™! L

P, (56)
R
where R may be computed by differentiating
R*=RR=X*+Y2+ 272 (57)
to obtain
RR=XX +YY + ZZ
so that
ﬂ:f_. YY + ZZ _3.,
R
12

The argument of perifocus is then obtuined as

- . A
W=, T, U w

2 (55 )

I

where 4, and

v are given by Eqgs. (53) and (56), respec-
tively.

The vector v is given by

i
r

Hence,

Vvt (59)

= :Z— v - ~Rﬁ -
R
"—‘B—V-"—h—R

. . A
The vector P is then given by

’ A
ﬁ=cosdtj—sinyv (60)
and, hence,

6=sinyﬂ+c05v0 (61)

It remains to determine At, which is the epoch time
minus the time of perifocal passage. The computation of
this quantity depends upon the type of conic described.

If 1/a > 0, then the orbit is an ellipse or & circle. If the
orbit is a circle (¢ = 0), then « =0 and 7 is taken as
the time of nodal passage, which is given by

At = —2 (62)

6)

If the orbit is an ellipse, the eccentric anomaly E is
given by

R R a
E = tan"! ————rs 63 .
T @R Gar (63) }
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Kepler’s equation is
M =E — esinE (64)
where

M = mean anomaly

A
[
()
(see Egs. 16 and 17). Hence,
M 3
At = )v. (65)

where M is given by Eq. (64).

Equation (63) is obtained from the standard equations
for the eccentric anomaly (Ref. 4, p. 118):

(1 — e*)"siny

sin £ = e cormeere—.
I+ ecosy

e+ cosy

cos E = e
8 1 + ecos>

and noting that

./ 1\"”
"“(:z)
1_1
P\R™T

_ RRa
~ {a— R)(ua)™

Thus,

RRa ] (66)

E = tan™ [m

If 1/a < 0, the orbit is liyperbolic. The mean anomaly
of a hyperbola is
My =esinhF — F (see Eq. 30)
with

M, = naAt

or
L1]
A\’)] = (-_:':ET) At

by definition of n, the mean motion; see Eq. 18). Hence,
M,

at — —t s

(<)
==

The eccentric anomaly F of a hyperbola may be com-
puted as shown below. From Ey. (29),

(67)

sinh F = -:6-(-2";!:;-17“

»
1/p e Rsiny
cos y = == (—I - 1) (see Eq. 54) = e
Then R-l- . (2')"'
e » .
=T - (by use of Eq. 55)
sin E (1 —e*)*siny (e~ D"
= tan £ = ——— .
cos E et cosy RR
= Tlgl — 11a T
(p v ] -(p)” VAN .,[i_‘.'-‘_p....‘..:.]
_\4a e [ - P \Fa . !
= 17p o p RR A
etz \F~ ) (e’"“*‘ﬁ) aT e
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because, for a hyperbola,

a -1
p €&-1

(see Eq. 476, Section X-B). Thus,

RR

and, therefore,

... RR
F = sinh 1['9—-(—_-21“—);?]

= sinh-!' B
or
F =log[B + (B* + 1)'7] (B8)

by use of a well-known identity for inverse hyperbolic
functions, where

RR

BrYErnE (69)

In case

a

the orbit is considered parabolic. From Eq. (32), one
obtains

) i
at = T%ﬁ + -(W[;F- (Barker's equation) (70)
where
D = (29)'* tan (—:) (7

E. Psauda-Asymprote and Asymptote Coordinates to
Cartesian Coordinates Transfarmation®

The hyperbolic excess-velocity vector V. at Jaunch is
important because it tells the direction in which the
spacecraft must be traveling relative to the launch planet .

‘Reference §.

4

when the spacecraft is on the point of leaving the gravi-
tational influence of that planet. Although an infinite
number of escape trajectories (all hyperbolas) can have
the same excess-velocity vector, only a portion are prac-
ticable when related to existing launch sites and boost-
vehicle constraints.

The following assumptions are made to obtain the
solution of the escape phase of motion:

(1) The spacecraft is acted upon only by the gravita-
tional force of the launch planet.

(2) The oblateness effects of the launch planet are dis-
regarded.,

The direction of the asymptote of the escape hyperbola
is found by normalizing the hyperbolic excess-velocity
vector V.. The injection energy C, of the escape hyperbola
is found by squaring the hyperbolic excess speed, or

C,=V2 (72)

where V1V, | (sce Eqgs. 481-483, Section X-B).

As previously stated, not all of the infinite number of
escape trajectorics are practicable. Two of the practical
aspects of a set of trajectories are the size and shape of
the hyperbolas. Size is basically determined by C, (which,
in turn, is a function of the boost-vehicle capability).

The shape of the hyperbola is determined by its
eccentricity, which is a functiun of both C, and the
perifocal distance according to

e—1 .+ RC (73)
[

where
R, — perifocal distance

» = GM ~ universal gravitational constant times mass
of launch planet

Equaticn (73) may be derived as described below.
From the general equation of a conic

R - P

"1 - ecosy
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there follows for the perifocal distance R, (v = 0)

P

R’=1+e

_ a(l — e?)

=a(l —e) (14)

or, to solve for e,

and because

(sce Eq. 481, Section X-B). Since for a hyperbola, a < 0,
Eq. (73) follows.

From Eq. (73) it can be seen that, for a fixed R,, the
ceeentricity increases linearly with the energy.

Therefore, both the size and the shape are essentially
determined by the energy alone, which is obtained from

Eq. (72).

Given the size and shape of the escape hyperbola, its
planar orientation must be determined. This can be done
by consideration of two vectors: (1) the direction of the
hyperbolic-cxcess vectpr, denoted by the unit vector é.

and (2) a uuit vector R, directed from the center of the

launch planet to the launch site. The flight plane of -

the spacecraft will essentially be determined by these
two vectors, as is shown in Fig. 8.

If the 'aunch date and flight time of a mission are
specified, the ascending asymptote vector S as well as
the energy C, of the near-earth conic become known
Juantities (C, is actually twice the energy per unit mass;
i.e,, the vis-iva integral). This follows from the fact that
the four defining quantities of an interplanetary (or lunar)
trajectory are launch date, right ascension and declination
of the ascending esymptote, and C,. If it i- assumed that
the overall mission has becn specified, then S and C, are
constants of the prcblem.
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NORTH POLE

VERNAL
EQUINOX

Fig. 8. Spacecraft flight plane

The problem of transforming pseudo-asymptote and
asymptote coordinates to Cartesian coordinates may he
formulated as described below. Given

b3 azimuth of launch

- L

i

&, = latitude of launch site

R = injection radius

I" = flight-path angle (Fig. 9)

C, = cnergy per unit mass at launch
O, = right ascension of ascending asymptote

@, = declination of ascending asymptote

r
b

p = GM = gravitational constant of launch planet

itis desired to compute
R = (X,Y,Z) = radius vector at injection
V= J.(,)",é) = velocity vector at injection
From Fig. 8, it is readily found that
“’z = COS

= sin3,cos ¥, (75)
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PLANET /

s \ ///

(DIRECTION OF PERIFOCUS) x',

Fig. 9. Launch geometry

where

3. = azimuth of launch
&, = latitude of launch site -
It should be recalled that S points in the direction of the
hyperbolic excess-velocity vector; hence, S points in the
direction of the ascending asymptote.
A
Thus, the unit vector S may be represented by

A A A A

AAA
where LJK are unit vectors in the X,Y,Z directions, re-
spectively.

Equation (76) may be rewritten as

§=cosescos¢8f+sin0,ms tbsj\+sin %f(

= (Sx,5v.51) (77)
where
A
©. = right ascension of S
A
®; = declination of S
16

Equation (77) follows directly from inspection of Fig. 8.

A
Now 8 is in the orbital plane; thus,

A A

WeS=0
Also,

A A

Wew=1
Hence,

Wxsx+Wysy+Wzsz =0

(78)
Wi+ W2 +Wwz=1

The system of equations represented by Eq. (78) may
be solved simultaneously to yield

—W; Sy Sz == Sx (L — 2 — W)

W= )
_ —W2sin O sin &5 == cos @5 (cos? &g — W3)*
B cos By
(79)
—(WySy + W; S
w, = —HrSr t Wi (80)

where $,,5y,8; are given by Eq. (77) (Ref. 6, p. 5).

The injection velocity is given_by

o=(o+2)" @

where R is the injection radius. Equation (81) follows
directly from the vis-viva integral (Eq. 44).

The (unit) angular momentum h is computed as follows:
h=|RXv|=RvcosT

where I' is the flight-path angle (Figs. 9 and 10).

The eccertricity of a conic is

q)
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Ry = VELOCITY COMPONENT
OF R AT RIGHT ANGLE
TO RADIUS VECTOR R

R_ = VELOCITY COMPONENT

OF R PARALLEL TO
RADIUS VECTOR R

e

o\ ,

LS 2

w | “

Fig. 10. The flight-path angle I

Because
(pr)*=h
and
C, = — 4=
3 a
it follows that

2 A
e=(l+%) (83)

Case 1: 0 < e < 1. The trajectory is an ellipse, and the
semilatus rectum p is given by
p= ._&.. (62 — ]_) (84)
C.

The true anomaly » is computed from the basic formula
of a conic

_ P
R= 1+ ecosy
Hence,
p—R
v =cos | ——m ) , O0deg <v<180deg (85)

An cllipse does not have an asymptote. To enable use of
the energy concept e¢ven in this case, the quantity via =
maximum true anomaly is defined as the angle between
P (a vector pointing toward perigee) and a given radius
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s ——

Fig. 11. The radius vector R,

R... (Fig. 11), which is a “pseudo-asymptote” (e.g., Ruax
may be the vector from earth to moon). Then, from
Eq. (85), one has for vmax

L. R““") (86)

Vmax = COS™!
e = cos (2208

where Rumax = | R 'u

Case 2: e > 1. The trajectory is a hyperbola, and the
true anomaly (at injection) is computed from

—80deg <v—T" <90 deg
(87)

sinI"=esin(v—1T),

so that

(88)

v=1I 4 sin? (six;l")

A derivation of Eq. (87) is given at the end of this section.

To obtain vmas, one should consider Eq. (85); i.e.,
o[ PR
v = COs ‘( R )
(L )
R 1
= cos \— — —
e e

Letting R — «, one finds that

-

Ymax = €OS~! ( - %) ,  90deg < vuax < 180deg
(89)

17
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The radius vector to injection may now be computed,
and it is as follows (see Fig. 9):

A A
R = R [cOS (vaus = 1) 8 + 8 X W sin (vuwe — 1)] (90)

The velocity vector is then given by

A
V=V(cosFWXR +sin1‘5) (91)

R R
(see Fig. 9)

To derive the equation sin ' =¢ sin (v —I'), one
observes that the angular-momentum vector h is given by

h=RXR=RXv
Thus,
h=|h|={RXR|=|R||R|siné

= Rosin(—"—+ I‘)

2
= RovcosT’ (92)
(see Eq. 82). Now
A h h
VImRITE

thus,
h=hW=RXR=RX (R +R) =
. \ A
RXRg = RR;(sin?) \ 4
A
= R%»W (93)
From Egs. (92) and (93), one obtains
R% = RvcosT (94)

Because
v = [(Ri)?* + (R)]*
Eq. (94) may be rewritten as
R% = R[(Ri)* + (R)?]* cosT
or

Ry = [(R})* + (R)?]* cosT"

18

so that
1 13{ 27 va
But ...
R _dR
v

and because

_ p
R= + ecosy
one obtains
dR _ pesinv _  Resiny R (96)
A ([T +ecosy) T1Fecosr — 3
Substiiution of Eq. (96) into Eq. (95) vields
esiny \*"
1= [1 + (—-—-——1 y ecow) ] cosT
_ (1 +2ecosy + e*)
- 1+ ecosy cos I
or
1+ ecosy
D=
cos = (1 + 2ecosy + e?) (97)
Hence,
sin" = (1 — cos? ') = csny (98)

T (I+2ecosy L e
From Egs. (97) and (98), one obtains

sin' _ esiny
cosI’ ~ 1T+ ecoss

and so

sinI’ + egsinlcosv = esinycos T
or

sinl’ = esin( — I’
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V. Rotations of Coordinate Systems

The fundamental coordinate system for reference of
the equations of motion is the Cartesian frame formed by
the earth mean equator and equinox of 1950.0—the Julian
ephemeris date (JED) 2433282.423; the position of the
mean equator of the earth and the ascending node of the
mean orbit of the sun on that equator, taken at the
beginning of the Besselian year 1950, serve as the defini-
tion. The X-axis is directed along the node, the Z-axis
northward above the equator, and the Y-axis in a direction
to complete the usual. right-handed coordinate system.

A. Earth-Related Transformations

The direction of the rotational axis of the earth is not
fixed in space. The actions of the sun and the moon on
the equatorial bulge cause variations in the orientation
of the equatorial plane, whereas the perturbative effects
of the planets produce a variation in the ecliptic. Once
a fundamental inertial reference system is specified, it
would be sufficient to tabulate the direction cosines of
the rotational axis to the coordinate axes. The problem
is not treated .in .this. way for historical and practical
reasons,

In practice, the motions of the ecliptic and equator
are both explicitly computed as a matter of cbservational
necessity. Furthermore, the long-term motions that can
be treated as though they are secular (precession) are
separated from the short-period motions (nutation). The
fictitious equator, ecliptic, and equinox, which are defined
as being represented by the precessional motions only,
are called mean; those affected by both precession and
nutation are called true. Values fixed at the time corre-
sponding to a fundamental reference are values at the
epoch, whereas those referring to instantaneous moments
are-the values of date.

B. Rotation From Mean Edrth Equater of 1950.0 to
Mean Equater of Dafe
The rates of precessional motions (general, planetary,
lunisolar, in right ascension, and in declination) must be
distinguished from bnth the accumulated amounts of the
motions over an extended interval of time and the con-

sequent displacements of the coordinate systems produced
by precessional motions.

The amount of the precession in right ascension during
the interval from t, to ¢ is ({, + Z), where (90 deg — &)
is the right ascension of the ascending node of the mean
equator at time ¢ on the mean equator of t, reckoned
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from the mean equinox of t,, and (90 deg + Z) is the
right ascension of the node reckoned from the mean
equinox of ¢.

The amount of the precession in declination is the incli-
nation 6 of the mean equator at time ¢ to the mean equator
of t, (in what follows, ¢, = 1950.0). Thus, the general preces-
sion of the terrestrial equator and the consequent retro-
grade motion of the equinox on the ecliptic may be
represented by a rotation matrix A. Obtained by com-
posing three rotations, matrix A rotates the mean equator
of 1950.0 to the mean equator of date.®

The first rotation (Fig. 12) is about the Z-axis from the
mean equinox of 1950.0 to the ascending node of
the mean equator of date on the mean equator of 1950.0,
with the matrix of rotation given by

cos (90 — &) sin (90 — &) 0
A;=1 —sin(90—¢) cos(90—¢) O
0 0 1
sin §, cos ¢, 0
=] —cos¢ sin ¢, 0 (92)
0 ] 1

The second rotation is about the X”-axis through the
angle 6 (Fig. 13), where the matrix of rotation is

1 0 0
A= 0 cos 6 sin @ (100)
0 —sin @ cos 6

The third rotation is a left-handed rotation about the
Z’-axis to the mean equinox of date (Fig. 14). The matrix
for this rotation is

cos (0deg +Z) ~—sin(90deg 4 Z) 0
A;=| sin(90deg +Z) cos(90deg+2Z) 0

0 0 1
—sinZ —cosZ O
= cos Z ~sin2 0 (101)
0 0 1

SWitt, ]. W., JPL internal document, Oct. 20, 1968,
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Fig. 12. Mean equator of 1950.0
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Fig. 13. Rotation about X”-axis
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Fig. 14. Rotation about Z’-axis
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The rotation from the mean equator of 1950.0 to the mean equator of date is then obtained by composing the three

rotations to yield the precession-rotation matrix

(—sin Zsin ¢, + cos Z cos 6 cos {)

A=A A = (cos Zsin ¢, + sin Z cos 6 cos &)

(sin 6 cos §o)

The angles ¢, 4, and Z are’

¢ = 23047952 T + 073022 T2 + 070180 T
0 = 20047257 T — 074268 T — 070418 T*
Z = 23047952 T + 170951 T2 + 070183 T*

where T is measured from 1950.0 in tropical centuries,

T, — 2433282.423357
36524.21988

T =

where T, is the Julian date of the epoch in ephemeris
time.

By use of the conversion factor

36528

_ Julian century
Q= 36524.21988 ’

tropical century

(103)

the coeficients for ¢,, 6, and Z may be converted so that
T is measured in Julian centuries from 1950.0. Multipli-
cation of the converted coefficients for ¢, 6, and Z by
another conversion factor

. 0.1745329251994329 rad
Q"= 360 arc-sec

(104)

yields coefficients for ¢{,, 6, and Z in radians:

:0 = a;T + bsz + C.T"
6 = a,T + b,T* + ¢,T* (105)
Z= a;T + baTa + c;T’

Given by Khatib, A. R., JPL internal document, Jan. 10, 1969,
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(—sinZcos{, — nos Zcosfsing,) (—cos Zsin )

(cos Zcos & - sin Zcos@sing,) (—sin Zsin§) (102)

(--sin@sin o) (cos 6)

Given the Julian date of an epoch T, (in ephemeris time),
the T required in Egs. (105) is

T, — 2433282.423357

T= 36595

in Julian centuries past 1950.0 E.T.

The time derivatives of ¢, 6, and Z are computed from
Eq. (105):®

¢o = a, + 2b,T + 8¢,T? rad/Julian century
é = a, + 2b,T + 3¢,T? rad/Julian century
Z = a, + 2bsT + 3¢,T*, rad/Julian century
(106)
The time derivative A of the matrix A is given by
Ly if=123
7 Ais i J =12, (107)
where
Au = —cos¢o(d,sinZ + d,) — dysing,cos Z
A;z = sin¢{o(disinZ + d,) — d;cos ¢, cos Z
Au = Zsin@sinZ — § cos 6 cos Z
Ag, = cos {o(d, cos Z — d,) — dssingosinZ
A.gg = —sin{y(d,cos Z — d,) — d; cos {,sinZ
A“ = —ZsinfcosZ — fcosOsinZ
Au = écost,,cos 06— fosinfsino
Ay = —6singocos 8 — {cos ¢ sin 6
Au = —§sind
Witt, J. W., JPL internal document, Oct. 20, 1968.
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where
d, = (Z cos 6 + &)
d, = §sinfcos Z
dy = (Z + {, cos 6)
di= fsinfsinZ

Each component of A is divided by 0.315576 X 10 s/
century to yield the amount in radians per second.

The primed and unprimed coordinate sets are then
related to each other by

X’ X
Y’ = A Y
z Z

X’
YI =

x\
) dl,
T Y (108)
zZ Z

X X
=A|l v | +A] v
Z z

C. Meun Obliquity of the Ecliptic and Its Time Derivative

The mean obliquity of the ecliptic € is the angle be-
tween the mean equatorial plane of the earth and the

ecliptic plane (Fig. 15), and is computed from the follow-
ing expression:?

T = 84404784 — 46.850 T, — 0.0034 T2 + 0.0018 T?
(109)

where T, is the number of tropical ceaturies past 1950.0,

T, — 2433282.423357

T\ = ——or31083

where T, is the Julian date of the epoch in ephemeris
time.

*Khatib, A. R., JPL internal document, Jan. 10, 19689,
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Fig. 15. Mean obliquity of the ecliptic €

If it is desired to obtain € in radians, use may be made
of the conversion factor Q’ (see Eq. 104). Then

A = 84404784 O
B = —467850 Q'
C = —070034(Q’
D = 070018 ¢’

in radians, so that

€= A+ BT + CT* + DT*

(110)
The time derivative of € is then
~ B+4+2CT +3DT*
€ = 36525 X 86200 (111)

in radians per second.

D. Earth Mean or True Equatorial Coordinates to
Ecliptic Coordinates Rotation
Let it be assumed that the X-Y plane is the mean or true
equator of the earth, with the X-axis in the direction of
the mean or true vernai equinox. The ecliptic coordinate
system (X",Y",Z’) is obtained by rotating about the X-axis
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’

Fig. 16. True or mean obliquity

by the angle € or e—the mean or true obliquity (Fig. 18).
The rotation matrix, denoted by K, is then

1 0 0
K={0 cosf  siné (112)
0 —sin 6 cos 8
' where
§=core (113)
Then
. 0 0 0
-« . .
i K=-6|0 sin 6 —cos 6 (114)
0 cos 6 sin 6
where
@ =core
@=¢cor€

The two coordinate sets are related by K and K as

follows:
X x\
Y |=K{ Y \\ (115)
z Z /
X’ / X\ X
Y |=Kl v |+K| v (116)
Z \ Z z

JPL TECHNICAL MEMORANDUM 33-451

Thus, a position vector r in the unprimed system becomes

x x
=1y |=K| ¥ | =Kr (117)
z %/

and a velocity vector ¢ in the unprimed system becomes

x p X x / %
\ 7 z z/ z
= Kr + K&
R (118)

E. Mean Earth Equaror and Equinox of Date Coordinates
to True Earth Equator and Equinux of Date
Coordinates Rotdtions

Nutation represents the difference between the position
of the true celestial pole (rotational axis of the earth) and
the mean celestial pole. Because it is entirely composed
of the short-period effects caused by the actions of sun
and moon on the figure of the earth, nutation affects only
the equatorial plane, not the ecliptic. For this reason, it is
most convenient to apply nutation to ecliptic coordinates,
in which the vernal equinox is shifted from its mean posi-
tion in the mean ecliptic of date to its true positicn, which
is in the same plane. That is, the true ecliptic of date is
also the mean ecliptic of date. The true equator of date
differs from the mean equator of date by two iricrements:

{1) 8y = nutation in longitude, which is the true longi-
tude of date of the mean equinox of date.

(2) &€ = nutation in obliquity
The mean obliquity of the ecliptic is defined as
€=¢€+ de
where € is the true obliquity of th. cehiptic.
The transformation of Cartesian position and velocity
coordinates from the mean earth equator and equinox of

date to the true earth equator and equinox of date
requires three rotations.

The XY-plane is the plane of the mean equator of the
earth, with the X-axis in the direction of the mean vernal
equinox. The relation between the true earth equatorial
coordinate system (X’,Y’,Z’) and the mean earth equa-

23
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Fig. 17. Mean and true equinox of date

torial coordinate system (X,Y,Z) is shown in Fig. 17. The
nutation in longitude 8y is measured from the true
vernal equinox at the X’-axis to the mean vernal equinox
at the X-axis. To rotate from the mean equator and
equinox of date to the true equator and equinox of date,
one first rotatés from the mean equator to the ecliptic

A negative rotation of the rozult through the nutation in

longitude about the Z-axis to the true vernal equinox is
accomplished by

cosdy —sindy 0
B =1 sindy cos dy 0
0 0 1

A negative rotation about the X’-axis to the true equator
is obtained by application of the matrix

1 0 0
C=]0 cos € —sin €
0 sin € cns €

Thus, the primed and unprimed coordinate systems are
related by

about the X-axis with

X’ X
1 0 0 y | =CBA| Y (119) -
A=10 cos € sin € 7 7z
0 -—sin€ cos €

where the primed system corresponds to the true equator and equinox of date and the unprimed system corresponds
te the mean equator and equinox of date. If one lets N = CBA, then'

(cos 8y) (—sin 8y cos €) (--sin 8y sin €)

N=] (sindycose) (cosdycosecos€+ sinesin€)  (cos 8y cos €sin€ — sin € cosE) (120)

(sin dy sin €) (cos dy sin€cos€ — cos €sin€)  (cos 8y sin €sin € + cos € cos €)

The time derivative of N; d(N)/dt = N, is given by

N(
N(

N(1,2) = €sindy sin € — 8 cos 8y cos €

L1) = —3§sin 8y

N 1,3) = —sin 3y cos € — 8y cos Sy sin€
N(2,1) = —ésin 8y sin € + 8y cos 8y cos €
N(2,2) = d,sin€cos € + d, sin €cos € — &} cos € cos €sin Sy
1\.7(2,3) = d, sin€sin € — d, cos cos € — &) cos € sin €sin 8y

N(3,1) = &sindy cos € + 3 sin € cos 3y

b'l(3,2) = d, sin €sin € — d, cos € cos € — 8y sin € cos ¢ sin 3y

h.l(3,3) = --d, cos €sin€ — d, cos €sin € — &, sin €sin €sin 8y

J T

’ 19Warner, M. R.,et al,, JPL internal document, Oct. 30, 1968.
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Therefore, the position and velocity coordinates in the
true equator and equinox of date reference :ystem (the
primed system) are obtained as follows:

X' /X

Y | =Nj Y (121)
] \z

and
X! X X
v |=N[7Y \ +N{ Y (122)
Z // / Z

F. Rotation Transforming Earth-Centered True Equatoiial
of Ddte, Space-Fixed Coordinates to Earth-Fixed
Coordinates

The XY-plane is the plane of the true equator of the
carth, with the X-axis in the direction of the true vernal
equinox. The carth-fixed  coordinate  system  (X2Y*Z’)
is obtained by rotation about the Z-axis by the angle
y(T), which is the Greenwich hour angle (GHA) (Fig. 18),

The two coordinate systems are related to each other
by the rotation matrix E, given by

cos y(T) siny(T) 0
E=] —siny(T) cosy(T» 0 } (123
0 0 1

The time derivative of E is

sin y(T) -cos y(T) 0
E=—#%T)| cosy(T) sing(Ty 0 (124)
0 0 0

Therefore, E and E relate the two coordinate sets as
follows:

X’ X
Y J=El r (125)
z Z

JPL TECHNICAL MEMORANDUM 23-451

~
~

> ¥

“S—TRUE OF-DATE EQUATORIAL
PLANE OF THE EARTH

’ ! Xt

L3 [\
= PRIMF [GR EENWICH)

MERIOIAN OF THE EARTH

Fig. 18, Prime meridian of the earth

and
N X X
o) oELY ey (126)
7 7 7

The Greenwich Lour angle ¢(T), which is defined as
the angle between the vernal equinox of the earth and
the Greenwich meridian (Fig. 19), is given by

oT)  yu(T) + 8a (12m
where

da By cose
= putation in right ascension
8y - nutation in longitude (Fig. 20)
€ — true oblignity of ecliptic

yuiT* = Greenwich hour angle of mean equinox of date
yu{T) is given by (see Ref. 2, p. 75)

yu(T) - UT1 + 29925936 + 8640184342 T, + 00929 T?
(128)

where T, is the number of Julian centuries of 36,525 days
of universal time since 12 h, January 0, 1900 UT,
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UT1 is given by
UTl- ET --(ET- AD- (Al UTh (129)

where ET is the number of ephemeris seconds elapsed
since 0 h ephemeris time on the cwrrent day and
(ET - A) and (Al - UTDh are time transformations
{see Section I1I-E),

Because yyu(T) is usually desired in radians, the terms
on the right side of Eq. (128) must be converted into
radiane This conversion is effected as follows:

A — 2392583 f
B — 8640184542 f
C = 00929

in radians, where

0.011745329251994329
w0 (1%

26

in radians divided by ephemeris seconds. The conversion
factor f is determined as follows:

1deg = 0.01745329251994329
24h = 24 X 36005 = 330 deg
= 360 X 0.01745329251994329

in radians; thus,

f= 360 X 0.01745329251994329 0 01745329251994329
- 24 X 3600 T 240

in radians divided by ephemeris seconds. Given the
Julian date of an epoch T, in seconds past January 1,
1950, 0 h UT1, T, may be computed as follows:'

T, — 2415020
T —smm—

where 2415020 is the Julian date of 12 h, January 0,
1900 UT.

An equivalent expression for UT'1 in Eq. (128) is

[ —

UT) - T2« (131)

in radians, where T, - [T, - 0.5)] decimal part (Ref. 7,
p 37). Therefore, the GHA in radians is

———

W= UTL - A BT, - C (modulo 2#)

(132)

T! : 8y cose

The derivative of (T with respect to ephemeris time s
given by

T JulT) * B cos € &by sin ¢ (15

in radiams divided by ephemeris seconds, wheve §y(T)
is computed from Eq. (128) {see Ref. 7, p. 3T):

BOH0194°542 + PIAS8T \ 2»
36525 7 86400 ] 86400

(134)

il T) diT] (l .

in radians divided by eph-meris seconds.

""Warner, M R.. ¢t al., JPL internal document. Oct. 30, 1968,
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From Eq. (129}, and from Egs. (4) and (6), it follows
that

d(’y l - Af‘uiuu\ - >
e = 't yimerte &M (139

where ¢ is the number of seconds past the start of the
time block containing the given parameters f, g, and h.

G. Mars-Related Transformations

For purposes of defining Mars-related coordinate sys-
tems, tour reference planes are chosen:

(1) Mean equator of date.
(2) True equator of date.
(3) Mean orbit of date.

(4) True orbit of date.

The reference directions are the ascending node of the
orbit on the equator (both mean or both true) and the
intersection ot the Martian prime meridian with the true
equator. The former is called the Martian (vernal) equinox
of date (mean or true), and the angle between the prime
meridian and the true equinox of date is called the "Mars
hour angle” (see Ref. 2, p. 334-335, for the dcefinition of
the prime meridian of Murs).

Five coordinate systems!? result

(1) Mean equinox and orbit of date.

(2) Mean equinoy and equator of date.

(3) True equinox and orbit of date.

(4) True equinox and equator of date {space-fised).

(5) Prime meridian and true equator of date (body-
fixed).

Only the precession (therefore, only the mean equator) of
Mars is well known at present. Until nutation is also well
known (and, with it, the true equator), the mean and true
equators will be considered coincident; therefore, the

VWi, | W JPL, internal document, (Oct. 20, 1968,
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mean and true equinoxes are the same. Because of this
fact, it suffices to consider only three coordinate systems:

(1) Mean (=true) equinox and orbit of date.

(2) Mean (=true) equinox and equator of date (space-

fixed).

(3) Prime meridian and equator of date (body-fixed).
The Martian equator *nd equinox are shown in Fig. 21.
The elements of the wmean orbit of date with respect
to the ecliptic and mean equinox of date (see Ref. 2,

p- 113) are given by
1 = 48°47°11719 + 2775757 T — 07005 T¢ — 070192 T*
(136)

= 195101720 — 27430 T - 070454 T* (137)

where T is the number of Julian ceaturies of 36,525
ephemeris days elapsed since 1900, January 0, 12 h ET.
(JD - 2415020.0).

The adopted position of the north pole of Mars!! is

1.62024

a — 316.55 ¢ 230 1 (138)

12,528

$ =528 + T (139)

-

VKkhatib, A. R, JPL internal document, Jan. 10, 1969,
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where

a,3 = right ascension and declination of pole with
respect to mean earth equator and equinox of
date

T = number of tropical centuries past 1905.0

These angles are used for both the mean and true Martian
equators because the nutation is unknown at present.

With the above angles, it is now possible to locate the
mean (= true) equinox for Mars. First the auxiliary
angles x, y, and z are computed (consider the spherical
triangle shown in Fig. 22). Then, from spherical trigo-
nometry,

sinx sin€
sin(90 + a) ~ sinz

or
sinzsin v == sin €cos a (140)

sinzcosx  cos (90 + a) sin 1 — sin (90 + «) cos {1 ¢cos €

= —sinasin{J — cos a cos {1 cos € (141)

cos3 " cos (90 ¢ a)cos 1+ sin (90 + a)sin 1 cos €

= —sin a cos 0 + cos a sin ) cus € (142)
Also,
sine _ Siny
sinz  sinfl
hence,
sinzsiny — sin'ésin 1 (143)

sinzcosy = cosfisin(90 ¢ &) - sin0lcos (90 *+ a)cos©

=cos{lcosa * sinfisinacos§ (144)
Then T is computed from

con T~ cos{180 (x T))cos[180 - (y + 90 - 8)]
+sin(180 (x D)
Xsin (19 (y 9% 3)]cosz

90 deg +a y

Fig. 22. Spherical triangle 1
or
cos T = cos (x — ) sin (y — 8) + sin (x —7)cos(y — 8)cosz
(145)

where T is in the first quadrant.
Another necessary angle is the arc between the ascend-
ing node of the Martian equator on the mean equator of

earth and the Martian vernal equinox A + 180 deg; a
(Fig. 23) is obtained from two additional equations,

sina __sinz
sin (180 — (x =] sind
Hence,
sinTsina = sinzsin(x -0 (146)
sinTcosa = cos [180 — (x - 7)) sin [90 - (y - 3)]
-sin[180 - (x — D] cos [90 —~ (y - 8)] cos z
or
sindcosd = —casx - ijeos (y — &)

+ sin(x — i)sin(y — 8) cos z (147)

The valie of A mav then be computed from Eqs. (146)
and (147).

The hour angle of the mean equinox of Mars'* is given
by

Vo~ 149.475 + 330.89 1962 (JD - 2418322.0)  (149)
where 2418322.0 is the Tulian date of 0 h, January 15, 1909,

These are all of the angles necessary to perform the
required rotations.

1Khatib, A. R., JPL interral docurr at, Jan. 10, 1969.
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Fig. 23. Spherical triangle 2

1. Rotation miatrices for position vectors. i the three
coordinate systems listed above Eq. (136) are denoted
by (X, Yi, Z)), i = 1, 2, 3, the rotation from body-fixed
to space-fixed coordinates is then

—sinV 0 X,

Y, ] 7 sinV cos V 0 Y,
Z, \ 0 0

X, cosV

i.e, a left-handed rotation about the spin axis. Then the
rotation to the mean (= true) equinox and orbit of date is

X, 1 0 0 X,
Y, |]=]0 cosT sinl Y. - (150}
Z, 0 --sinT cosl / Z,

or, in vector notation,

(151)

ry = rre

The rotation from the space-fixed system to the 1950.0
earth-equatorial system' is given by

X X, \
Y 1=ATR;R,R,!| Y, (152)
Z 1930 ZJ

or, in vector notation,

l ZJ
AT R RR.r. Q
or, in vector notation, Fa ~ ATRRRor: (133)
r, = Ryr, (149) where
A = nrecession-rotation matrix (sec Eq. 102)
[cus (A ¢ 180 deg) ~sin{a t+ 180degy 0O cos A sivd 0
R, sin(a * 180deg)  cos(a + 180deg) 0 sin .y cosa 0
0 0 i 0 0 1
-
1 0 0 1 0 0
R, 0 cos(Ndeg 8  sin(WNdeg 8 0 sir3 —coss
[0 sin (Wdegg  8)  con(Ndeg  3) 0 il sind
ptm(‘l)dc-q ) —sin90deg ta) 0 - sina - -cosa 0
R, sin (90 deg -~ cos (deg - 0 0} — cos a sina 0
0 0 1 0 0 1
1'Witt, ] W, JPL interna. document, Oct 20, , 969
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2. Rotation matrices for velocity vectors. From Eq. V = 350.891962 deg/day (from Eq. 148)
(149), it follows immediately that

From Eq. (151),

=R +Ror, (154) .
i'l = Rli‘g + R[rg 5155)
where
where
. —sinV  —cosV 0\
) R, =V cosV. —sinV 0 A = (0 0_' 0_
=] —sin{ 156
0 o o o I 1 '9 smx- cosi (156)
~*"\0 —cosl —sin ]
where
From Egq. (158),
fo = ATR,R.R. .+ (ATRR,R, + ATR,R.R, + A"RR.R, - ATR,R.R))r, (157)
| where The derivatives of the various angles in Eqs. (156)
through (160) are obtained as described below. From
A = derivative of precession matrix (see Eq. 107) Eqs. (138) and (139),
- i 1.6202
. cosa sina 0 @ - —--é-::)—‘i-dvg/tmpical century
R, =4} -sina —cosa 0 (158)
0 0 0 12528
8- -—Sa—ﬁ—-dt-g/tmplcal century
0 0 0
R, 8] 0 cosd  sind (159)  From Egs. (136) and (137),
0 —sin3 cos d
s 277557 1
Q= —=—deg/day
sina cosA 0 3600 36525
R, a - COS A sin A 0 (160) 1_ —2.430 1 toa/dav
0 o o © TB600  aesss des/day

Differentiation of Eq. (145) vields

~TsinT - (y Hfcos(x- Tcosly —8) —sin(x- Tsin(y -8 cosz)
+ (x'*:l')(*sin(!"'-i')sin(!l 4 - cosixe Deos(y -~ 8)coss)

“ 2 —sin(x D cos(y — M sin:) (181)

Equation (16]) may then be solved for i
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Differentiation of Eq. (146) gives

AsinIcosA = - TcosTsinA + % cos zsin (x — 7)
+ (% —?) sin 2 cos (x — 1) (162)

and Eq. (162) may be solved for A.
From Eq. (142),

~%sinz = ¢[—cos €sin { sina — cos 0 cos a]
+ 01 {cos€cos R cosa + sin N sina)

— € [sin €sin T cos ] (163)
where € is given by Eq. (111).
From Eq. (140),

. . . . o« e Qo
XSINZCOSX = —3COSZSINX — asine€sing + €Cos €COosa

(164)

From Eq. (143),

ysinscosy = —coszsiny + {Isin€cos {) -+ €cos€sin
(163)

Thus, E¢s. (163) through (163) yicld £, 1, and ¢.

M. Maon-Related Transformations

Figure 24 illustrates the geometry of the lunar equator
and orbit, and defines the required angles. The angle 0
on the mean ecliptic of the earth between the mean

p /— MEAN LUNAR ORNT
MEAN LLrAR /.

fQUATOR — t -~
~—— - \ P
\ /7
0“ “\ \ / /
B ///‘\
- = MEAN ECLIPTIC
B QF EARTH
- .
- /‘\
LUNAR PRIME
ME ROV AN

- TRE LN AR EQUATCE

Fig. 24. \unar aquator and erbit
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vernal equinox of the earth and the mean lunar equator
is given in Ref. 2 (p. 107) as

Q = 933,059779 — 6,962,911723 T -+ 7748 T* + 07008 7"

(166)
where, by use of the factor ( (see Eq. 104),
= 4.8481368] X 10-¢ rad (167)
=4 : ’ arc-sec

the above ceefficients may be converted into radians.
In Eq. (168), and in all following equaticns, T is the num-
ber of Julian centuries (36,525 ephemeris days) elapsed
since 12 h, January 0, 1900 E.T., Julian date 2415020.

The angle of inclination I of the mean lunar equator
to the mean ecliptic of the earth is given in Ref. 2
{p. 108) as

I=1°321 (168)
By use of Eq. (167), I may be converted into radians.

The mean longitude of the moon € is measured in the
ecliptic from the mean equinox of date to the mean
ascending node of the lunar orbit, and then along the
orbit (Fig. 25). The quantity € is derived from lunar
theory, and is given as a polynomial in time (see Ref, 2,
p. 107):

€2 973,562799 + 1.732,564,379731 T- - 4708 T+ + 00068 T
(169)

Another quantity needed is the mean longitude of the
lunar perigee 1, which is measured in the ecliptic from
the mean equinox of date to the mean ascending node

of the lunar orbit, and then along the orbit. The quantity
I is given in Bef. 2 (p. 107) as

I ' 203,58640 + 14,648,522'52 T~ 3717 T - 0"45 T*
(170)

By use of Eq. (167), the coefficients of Eqs. (169) and
(170) may be converted into radians.

Perturbations in the mean values 0, I, and £ are the
physical librations #, &, and r, respectively, that 1s, the
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Fig. 25. The orbit of thie moon relative to earth

actual angle of inclination and the angle between the mean
vernal equinox and the descending node of the lunar
cquator on the ecliptic are I + p and 0 + o, respectively,
and the angular distance from the descending node of
the lunar equator to the prime meridian is [180 deg
(€ + ) — (0 a)) M

The physical librations (as opposed to the optical libra-
tions) are the results of the moon being a triaxial ellipsoid
and not a sphere; the longest diameter is directed toward
the earth and the shortest along the axis of rotation,

The librations in node, inclination, and longitude o, p,
and r are computed from the following equations:*’

ol = I+ — 100"7 sin(g) + 23"Bsin(g * 2u.)

~ 1076sin (2g + 2m) (171a)
p=-987T3cos(g +239cos(g + 2u)
- 1170 cos (28 + 2) {171b;

e s epe———— Gr——

“Warner, M R etal, JPL intemal doctirment, Oct. 30, 1968
- Khatih. A. R.. JPL 10temal document, Jan. 10, 1968,

2

r = —1678sin (g) + 91”7 sin (g*) — 1573 sin (2w)

+ 1877sin (38 8983813 + 2179812%7)  (17lc)
where
g = ¢ — I'¥ = mean anomaly of moon
« =IY — 0 = argument of_perigee of moon
g' = mean anomaly of sun?®
= 1,290,513704 + 129,596,579710 T
—0v34T: - 07012 T (172)

If it is assumed that the coefficients of Egs. (166) and
(168) through (172) have been converted into radians by
using Eq. (167), then

Q=A,+BT~+CT:+ DT> (173a)
(=A,+B.T+C,T:+D,T (173b)
I"=A, +B,T+C,T: + D, T¢ (178c¢)
g=A+BT+CT: +D,T (173d)

al - Iz + Bysin(g) + C,sin(g + 2u) + D;sin(2g + 2w)
(173¢)

p = Bicos(g) + Cscos (g + 2w) + D,sin(2g + %)

(173f)
r = A sin(g) + B, sin(g!) + C;sin(2w)
t D: Sin([‘:; t F;T) (173g)
in rridians, and so*
) b4 el i ‘
G s B, +2C, T +~3D,T (174a)
f
. , +2C,T -~ 8D, T:
¢ =B 2C.T 3D, (174L)
f
: * g '| + Vi
v = B, +2C.T+13D1 (174¢)
f
. .+ 2C, T 3D,T:
g = B 2('; D, (174d)

VWitt, J. W, JPL internal document, ()ct. 20, 1968,
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in radians per second, where

f = (36,525 days/century) (86,400 s/day) = 8,155,760,000 s/century

Also,®

ol =1+ + g [B;cos (g) + C; cos (g + 2w) + 2D; cos (2g + 2uw)] + 24 [Cs cos (g + 20) + Djcos (28 + 20)]

p =g [—Bssin(g) — C,sin (g + 20) + 2D cos (2g + 2vw)] + 2 [—C,sin(g + 2w) + D cos (2g + 20)]

7= A gcos{g) + B: &' cos (g') + 2C:é cos (20) + gyeemennns

in radians per second, where
i= Q-1
. (176)
o="—-Q

Hence, to perform the rotation through the descending
node of the lunar equator on the ecliptic, the angle @ + o
and its derivative are used. To perform the rotation
through the inclination of the lunar equator to the
ecliptic, the angle I + p and its derivative are used. A
rotation from the descending node of the lunar equator to
the prime meridian may be performed by using the third
angle [180deg + (€ -+ 1) — (2 + ¢)] and its derivative.

I. Rotation Frnm Earth Mean Ecliptic to Moon True
Equator Coordinate Systeii

In what follows, a 3 X 3 rotation matrix and its time
derivative will be computed. This matrix transforme
Cartesian position and velocity components expressed in
an carth mean ecliptic and equinox of date coordinate
system to components expressed in a moon true equator

and equinox of date coordinate system.

The XY-plane is the mean eciiptic of the earth, with
the X-axis in the direction of the mnean equinox of date.
Figure 26 illustrates the relation between the earth mean
ecliptic coordinate system (X,Y,Z) and the moon true
equatorial coordinate system (X’,Y’,2’). Let
(7)

a=Q+ec
g=1+p (178)

19Klatib, A. R, JPL internal document, Jan. 10, 1969.
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(175a)
(175b)
F,
D, cos (E; + F;T) (175¢)
Then
a=Q+g¢ (179)
B=1+p (180)

where @, o, I, p, 9, 4, i, and p are obtained from Egs.
(168), (171), (173), (174), and (175).

A rotation about the Z-axis through the angle a moves —
the X-axis from the mean equinox of date of the earth to
the descending node of the true lunar equator on the
ecliptic. The matrix of rotation M, is then

cos u sina 0

M, =| -sina cos o 0

0 0 1

2 ra
TRUE LUNAR mng BRTY"
orsir -~

MEAN LUNAR
ORMT .

PLANE OF h — MEAN ECLIPTIC
LUNAR TRUE / Of EARTH
EQUATOR — \ v

W d
~
-\ a
/ \\ y Y
X
M \ /\'
AN
N
\

Fig. 26. Earth mean ecliptic dnd moon true
squoatorial coordinate systems
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A negative rotation about the X’-axis through the
angle 8 moves the X’Y’-plane to the true lunar equator
of date; i.e., space-fixed. The matrix of rotation M, is

Then

—asina

M= (—acosBcosa + BsinBsina).  (—g@sinBcosa — @ cos B sin a)

Let
M=MM,
that is,
cos a sin a 0
M=| —cosg sina cos 8 cos a —sin 8
—sin B sina sin 8 cosa cos B
(181)
0. COS Q& 0
—BcosB (182)

(—&sinﬂcosa—ésinacosﬁ) (—asinBsina +/§cosﬂcosa) —Bsing

The rotation matrices M and M relate the primed and
unprimed coordinate systems as follows:

X’ X

Y |=M{| Y (183)
z z

X’ X X

V=M Y |+M| Y (184)
Vi Z Z

J. Rotation Frori Moon True Equator dnd Equinox of

Date Cooidinates to Méon-Fixed Coordinates

The transtormation of Cartesian position and velocity
components, expressed in a moon true equator and lunar
equinox of date coordinate system, to components ex-
pressed in a moon-fixed coordinate system is achieved
by one rotation. Figure 27 illustrates the relation between
the moon true equator coordinate system (X, Y, Z), where
the XY-plane is the plane of the true lunar equator with
the X-axis pointing in the direction of the true lunar
equinox, and the moon-fixed coordinate system (X*,Y",Z’).

A rotation about the Z.axis through the angle y (y is
defined in Fig. 27) moves the X-axis from the true lunar

34
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equinox to the lunar prime meridian on the true lunar
equator. The matrix of rotation B is

cosy siny 0
B=| —siny cosy O (185)
0 0 1

2,7

y=({+tr)=(1+o0) * 180 deg

"

-

Y

y TS— TRUE LUNAR EQUATOR

—PRIVE MERIDIAM OF MOON

Fig. 27. Space- and body-fixed lunar coordinates
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The time derivative of B is

—siny coS y 0
B=y| —cosy —siny 0 (186)
0 0 0

Rotation matrices B and B relate the two coordinate sys-
tems as follows:

X’ X

Y |=B| Y (187)
z z

X’ X X

Y |=B| Y |+B[ ¥ (188)
z Z y4

VL. Translation of Centers

It may be assumed that the positions and velocities of
the planet are available (e.g., from an ephemeris tape)
in the earth equatorial 1950.0 system. At a change in
center (e.g., during integration), the position and velocity
of the spacecraft in 1930.0 coordinates, relative to the old
center of integration, are incremented by the position and
velocity, respectively, at the old center relative to the
new center (Fig. 28). The translated position vector is
then

r=r—ry (189)

and the translated velocity vector is given by
l." = !“ - l.‘,4 (1%)

SPACECRAFT
/ A
s
/ / '
L i

OLD CENTER "4 NEW CENTER

Fig. 28. Transiation of centers
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The same change of centers is employed when it is
necessary to transform the initial-condition coordinates
to the integration center that is to be used at the start of
the trajectory.

V. Equations of Motion of a Spacecraft

This section describes the differential equations of
motion of spacecraft that are integrated numerically in
a rectangular coordinate system to give the spacecraft
ephemeris with E.T. as the independent variable. The
X-axis is directed along the mean equinox of 1950.0; the
Z-axis is normal to the mean earth equator of 1950.0,
directed north; and the Y-axis completes the right-handed
system. The center of integration is located at the center
of mass of the sun, the moon, or one of the nine planets.
It may be specified as one of these bodies or it may be
allowed to change as the spacecraft passes through the
sphere of influence of a planet (relative to the sun) or
the moon (relative to the earth). In this case, the center
of integration will be the body within whose sphere of
influence the spacecraft lies. At a change in the center of
integration, the position and velocity of the spacecraft
relative to the old center of integration are incremented
by the position and velocity, respectively, of the old
center relative to the new center. The injcction position
and velocity components may be referred to any bedy
{not necessarily the center of integration; sce Scction
VII-D). The injection epoch may be specified in the UTI,
A.l, or ET. time scales and must be transformed to
cphemeris seconds past Jan. 1, 1930, 0%

The acceleration of the spacecraft consists of:

(1) Newtonian point-mass acceleration relative to the
center of integration.

(2) Direct oblate acceleration caused by a nearby
planct or proximity of the carth and the moon.

(3) Acceleration caused by solar radiation pressure and
low-thruct acceleration forces, such as operation of
the attituc'e-control system and gas ieaks.

(4) Acceleration caused by motor burms. (A motor burn
of short duration or a spring separation may be
represented alternatively as a discontinuity of the
spacecraft trajectory.)

(3) Acceloration caused by indirect oblateness.

(8) Acceleration caused by general relativity.
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Thus,

L [:_. - 2] +¥(OBL) + ¥ (SRP,AC)
i i ip

+ ¥(MB) + ¥ (IOBL) + ¥ (GR) (191)
where

F = acceleration of spacecraft

#c = gravitational constant of the center of iniegration,
km?/sec

mi = gravitational constant of body i, km?/s?

r = position of spacecraft relative to center of inte-
gration in 1950.0 earth equatorial rectangular
coordinates

ric = position of body i relative to center of integra-
tion in 1950.0 rectangular coordinates

rip = position of spacecraft relative to body i in 1950.0
rectangular coordinates.

It may be assumed that the precomputed position and
velocity ephemerides for the celestial bodics within the
solar system are available. These consist of the helio-
centric ephemerides of cight planets and the earth-moon
barycenter and the geocentric lunar ephemeris. The
heliocentric ephemerides (with the exception of those for
Mercury and Neptune) are obtained from a separate
numerical integration for each body, with cpoch values
chosen to obtain a lcast-squares fit to source positions.
The source positions, which represent astronomical obser-
vations, arc obtained from an evaluation of certain
general perturbation theories for the four inner planets;
from a simultancous intcgration of the cquations of
motion of the five outer plancts (corrected for the motion
of the inner plantts); and from an evaluation of the
Brown improved lunar theory (Ref. 8, pp. 374-375). The
acceleration causcd by each perturbing body is computed
from either the source position or the position from the
fitted ephemeris for the perturbing body (if previously
computed). ‘The ephemerides for Mercury, Neptune, and
the moon are obtained directly from the source positions,
with velocity obtained by numerical differentiation (see
Ref. 7, p. 24).

A. Newtonian Point-Mass Aéceleration

1. Cent-r of mass and incariable plane. Newton's law
of universal graviiation states that

36

F, = Xmms (192)
LEY
that is, two bodies attract each other with a force F.
directly proportional to their masses m,,m, and inversely
proportional to the square of the distance between thernr
r.2, where one defines

712=!l'1“1'2]

(hence, 1, =r.,). The constant of gravitation is defined
as k%, This constant is defined as equal to Gm, which is
the product of the universal gravitational constant and
the first mass. This is done because k can be determined
to much greater accuracy than can G. It should be noted
that m, is actually (despite its denotation) the mass ratio
of my/my; that is, m, is normalized with respect to m,
(see Ret. 4, p. 33).

From Fig. 29 it is easy to see that the force in the x
direction between bodies one and two is given by

. X — X
me = F;g cOos '.l‘ = F;g—g-;-'"‘

(193)
where

fa = [(x = x)? + (g — 50)?)™
Using Eq. (192), onc can write

Kmm, x, —x,

o

Fu,:

V2 : ﬁmz
;

Vl‘

|

L |

x, gz

Fig. 29. A system of bodies in an
inertial coordinate frame
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or

_ kmom,

z D
'l'.'

F,. (x, - x)) (194)

In exactly the same manner. the component of attrac-
tion between body one and body n in the x-direction is
derived as

k:mm,
Fu, = i (xa — X))
im

so that the total force on body one in the x-direction
caused by n bodies is

F“:P‘ R Fm,

1z

n
- X, — X
F,.= ke ;Z=z: "l""j——r'—,__-

1
1

It follows that the force in the x-direction upon an
arbitrary body i with mass m; is

u .
) (x; - x,)
F,=kY '"'""—"}—T‘"‘"
BT rn}
iwmi

By Newton’s second law,
y

I’x;
Fi,=m, ‘( /B
So
d.‘x‘ > (xl xn)
m; —— = k*m, —
dt? Ei s r;l
Similarly,
m, Y _ k*m, ij (y; 'y.)
dt =1 L)
IPY
and
dz; = (2) — zi)
— L2
m; km, 12:7"1} -
Joi

Hencee, in vector notation,

=

. (195)

dt-

[}

d-r. Ld ir,
m, okme Yom—
it

Here the summation excludes j =i, and this case will
automatically be excluded from future summations where
it would result in the vanishing of a denominator. For a
complete solution of this so-called n-body problem, 6n
constants of integration are needed; actually, only 10 are
known.

When all of the equations of the form of Eq. (193) are
added, the terms on the right side cancel, yielding

u s
Z mr, =0
i=t

This equation may be integrated at once to give
L]
Z mr, =at+b (196)
[E3 Y

where a and b are constant vectors. This means that the
center of mass (e.m) of the system moves, with respect
to the (inertial) system of reference, in a straight line with
constant speed. The origin can, therefore, be set at
the c.m.; then

zn: mir; =0
i=1
and Eq. (193) remains valid.

Multiplication of Lq. (193) vectorially by ¥; X, and
addition of the resulting n cquations, yields (since all
terms on the right side cancel)

i m;r; < r = 0
i=1
or, by integration,
L .
Z mir, Xr; = h (197)
=1

where h is a constant vector.

The plane through the c.m., perpendicular to h, is
called the invariable plane of the system. Care must be
used wher: one applies this plane rigorously to a physical
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‘ system. The angular-momentum integral (Eq. 197) is the
| result of the absence of external forces acting on the
system, and it expresses the fact that the total angular
momentum of the syscem is constant; this is made up of
the angular momentum arising from orbital revolutious
and from axial rotations. If all of the bodies are uncon-
nected, rigid, spherical bodies, whose concentric layvers
are homos- neous, then the axial rotations will remain
con«taut. as will che orbital angular momentum, In this
~ast, the system will have an invariable plane perpendi-
culay to the orbital angular-momerium vector. If these
conditions do not hold, however, precessional movements
and the effects of tidal friction will result in an inter-
change between the orbital and rotational parts of the
total angular momentum, and the invariable plane defined
by h in Eq. (197, will not be constant. Because the
conditions very nearly hold for a planetary system, it is
justified in practice to speak of the invariable plane of
the solar system; its elemeats ave, approximately, 0 = 107
deg and { =1 deg, 35 min (Ref 9, p. 206).

2. Force function. If the force function of the systen
U (see Ref. 9, p. 206} is defined by

ok Y M (198)

LY

then

»

.'\.i == k'Z,n.L [i _'-'.'.L]

.xb xl r rn_h

u (x, — x})
= —km; 3 om ——~L
1 LY

Therefore, Eq. (195) can be rewritten as
m; i:; = r;;. v (199)
where

v S LS
ox; i

Y
lar

3. Transfer of origin and perturbing forces. Let it be
supposed, as is the case with the sun in the solar system,
that one mass (say, m,) is dominant. If the origin is
transferred to m,, and the position vector of m; with
respect to m, is r’, then

v =T, - r,

The r,, elements are not affected, and /26 = ¢/2x,, ete.
Now,

iom, i mm,

U - km, -k ¥
IZ'l r'-’ D\"’)-'l r'}
~m, .

= km, o &
i1 Te
So
r'
U =, U ~ kmam, -;-',- i==n

Also, from the equation of mation of ma,

n-1 -

. T rj
| A-Z )"'......,.‘...__

1=} LY

or

. - r) 1 r;
v kY m = = —( T - kBmamy =
B Toj r

m, in

Removal of the ith term in the summation on the left
side yields

v A-1 r"
i k? m, ?‘ . & 2 m)—i==
1] f=1 rn/
I

17 . , r
- — ‘:'/ :.{]' —_ k’;n. m; +
m, Tin

or, if the primes are dropped (since the transfer to the
nevs origin is complete, and this can be done without
ammbignity),

ri + k*(m, + ms)‘:Ti'= mLViU' - k? ;ml‘:'.al'
in ,’A‘l‘ 3 |
(200)
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Now if
R, k(- BO
v T, "
then
m; lel = l V (M ) - k3 m, :Ij
Jn
and
e ke A cm,m
Sm ViR, =—3 v ') L‘Zm,
71 m, r,
| -
= J U= kE 2"‘/ y
/n

Combination of this result with Eq. {200) yields

‘ . . r - ,
Fot Ri(maomy—=— = Y m VR, {201)

" /R

The equations represented by ko (201) are funda-
mental. If the R, terms are zero, that leaves the equation
of motion of two badies; therefore, it is the R, terms that
cause the departures (or perturbations) from Keplerian
motion; they are called perturbative functions, Equation
(201) may be rewritten

t- k2 (m, !

or

o y r, b r, r r,
v~ kim, -~ ,n“-r‘ Z " = =
(205)
where g, = kim,,

The fiest terms on the right side of Eq. (202) are he
direct attractions on m; caused by the perturbing bodies;
the second terms are the indirect terms. If the ith body
ir identified with the spacecraft, and it is noted that
My + 1, =~ my [hence, K3 (ma + mi) =~ Kma = 4], it can
then casily bo seen that Eq. (203) is equivalent to the
first term of the rigid side of Eg. (191).

B. Acceleration Caused by ah Uninte Body

This section develops expressions for the aceeleration
of a spacecraft produced by a nonspherical centra! hody.
The equatorial bulge of a planet or the moon is respoi.
sible for a deformation in the gravitational ficld of that
planct or moon from that which would be produced by
a point mass or spherical symmetrical body. These de-
formations, which are especially important near the sur-
face of the body, produce conspicuous perturbations in the
orbits of low-altitude spacecraft. Thus, au aspherical or
nonsymmetric bady produces a noucentral foree field.
If it is desired to write the equations of motion of a
spacecraft in a noucentral foree ficld, an aspherical
potential must be determined. The gencralized potential
function U* for a planet or the moon, which allows the

2 Y Tin derivation of the direct acceleration of a spacecraft by
(202)  the oblateness of a nonspherical body, is given by
(’m""l"-m S’:‘ L N i ]
: TI. . -Z‘ =\7) " (sin @) (Cp.mcOs MA -+ S, 4 sin nu\).‘ (204)

where

# = aravitational corstant of body, km'/s?

r,é,A = body-centered (planet or riwon) radius,
latitude, and longitude (positive east of
prime merizian) of spacecraft

8, = mean equatorial radius of body (an
adopted constant uszd for U)

Pr(sin¢) = associated Legendre function of first kind
(the argument sin ¢ will be omitted here)

Cn.m, Sam = numerical coefficients (tesseral harmonic
and sectorial harmonic coefficients)
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The associated Legendre function P2 is defined as

PR = cosm g p
ST TG
where P, is the Legendre polynomial of degree n in sin ¢.
The zonal harmonic cocfficient J, is defined as
I.= —C-,o

20Adopted by the International Astronomical Union in 1961 (Ref.
10, 0. 2).
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Equation (204) may be written in three tenms—eorre-
sponding to the potential of a point mass, zonal harmonics,
tesseral and sectorial harmonices (see Ref, 7, p. 27)—in
the form

LR - AN
(_r rzl'(r)l'

a2
M ® » a, » . . .
4. - E z (.;_) P2 (Comoos A + Sy . sin mia)
.2 m.y3
(205)

with each term defined as

U= Ui+ U(CS)

Because the coefficients are obtained from satellite orbit
obscrvations, the center of coordinates is taken as the
dynamical c.m. of the particular body; in this case, the first-
degree (n 1) harmonics are zoro. Therefore, the sum-
mation over nin Eq. (205) begins with 2. At the present
time, harmonics are known only for the ecarth and the
moon, these have been determined up to n== 8, m - 8.
It should be noted, however, that the values of the higher-
degree coefficients are very uncertain, even as to the sign
of the value (see Ref. 10, p. 2. The order of roagnitude of
the tesseral harmonics for the carth is approximately 10 %,

The inertial aceeleration of the spacecraft is computed
in a rectangular coordinate system (24,2, with the
x’-axis directed outward along the instantancous radius
to the spacecraft, the y'-axis directed east, and the z-axis
directed north, as shown in Fig. 30,

PRIME
MERIDIAN - -\
\

/ EQUATORIAL

N PLANE

Fig. 30. Rectangular coordinate system axes x’, y’, and
2’ relative to body-fixed axes x,,y,,z,
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Figure 30 shows these aves rcdative to body-fixed axes
3, Where x; is along the intersection of the prime
meridian and oquator of the body, zy is directed north
along the axis of rotation of the body, and v, completes
the right-handed sys*em. The transformation from body-
fixed coordinates 1, - (x40.2) W0 v (X402 coordinates
is given by

o R rs
where
COs @ COs A COS ¢ SINA sing
R - -sin A Cos A 0

- SN G Cas A singsinA ;s ¢

The position of the spacecraft relative to the body ip
rectangular coordinates, referred to the mean earth equa-
tor and equinox of 19500, is given by r -~ r,, where ¢ is
the position of the spacecraft relative to the center of
integration in 19300 eaith equatorial rectangular co-
ordinates and r, is the position of body i relative to the
center of integration in 19700 rectangular coordinates.

The transformation of these inertial eoordinates to
body-fixed coordinates ry is defined as

oo Tir -r) (206)
where T is the transformation matrix that rotates from
budy-fixed ~oordinates to the mean earth equator and
equinox of 19300 (T is actuslly a product of rotation
matrices wherein each factor hos been specified in Sec-
tion V), For instance, rotation from Mars-fisexl coordi-
nates to the mean earth equator and equinox of 1950.0
requires the following product to be formed:

T = ATNIRJRJRlRi

where each matrix appearing in the product is described
in Sections V-B, -E, and -G.

The overall transformation from r — r; to v’ is thus
¥ =6(r-r)=RT(r—r,)
and the inverse transformation is
r—-r =TR Y = Gy
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If the body-fixed coordinates fron: Eq. (208) are used,
trigonometric functicns of ¢ and A are given by

. )
s\t @ —
r
(x8 v ws”
cos ’
¢ r
; »
SINA = '——y'—'—w
(x+w)
X
COsS A =

An cxpression will be developed for the inertial accel-
cration {i.e., acceleration with respect to the mean earth
vauator and equinox of 1950.0 coordinate system) of a
spacecraft caused by oblateness of any body, with rec-
tangular components along the instantancous directions
of the x, ¢, 2* axes, denoted by ¥, This acceleration can
be broken down into ¥(J) caused by zonal harmonics and
©(C.8) caused by tesseral harmonics. With these ters,
the contribution to the spacecraft aceeleration ¢ relative
to the center of integration in carth equatorial rectangu-
lar coordinates caused by the ublateness of any body s

¥(OBL)  GT¥
=GP {P) - TCS)

It should be noted that ¥ does not represent the com-
poncats of the acccleration relative to the rotating
(¥.y".3) coordinate systzm, but simply the componcuts
of the inertiai accolecation ¥ taken along the instan-
tancous ¥.y’.2% axes.

The components of ¥ are computed from

w U
X T e—

cr
w1
y reos ¢ A
w . 1 ~U
T e

where the point-mass teem of U, which has been ac-
counted for in Scction VII-A, is here ignored,

The carrying out of these derivatives yields

(n+ P,
B L1} a [
F S EL(%)] o (207)
LX)
~cos o P,
=~ DP(Camcosma t S, wsinama}
mseced P2 {- Comnsinma + S, cosma} (208)

cosp P (CpmcOsMA + Sy msinma}

where, for practical computations, n, and n, must be
predetermined.

Legendre polynomials, which appear in E¢s. (207) and
(208), are “nice” functions in the sense that they can be
defined recursively. Thus, the nth Legendre polynomial
P, is computed from

2n—1 n—1
Pnz:‘_"_Sin‘Pu—:_( n )Pn-i
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starting with P, =1 and P, = sin ¢. The first derivative
of P, with respect to sin ¢, denoted P, is given by

P, =sin¢ P, _, + nP,.,
starting with P; = 1.
The function sec ¢ P7 is computed by first generating

sec¢ PR = (2m — 1) cos ¢ [sec ¢ P17}
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starting with sec ¢ P! = 1, and then generating

] P 2n - 1\ ] P
secg P TT’T)\IIH}[S(‘(&& o

B (u o -"'l - l) [sec o P

n m

For each value of m between 1 and n,, n is varied
from m + 1 to n,. The general term P! is zero if b > a.

The function cos ¢ Py, where P’ is the derivative of
P2 with respect to sin ¢, is computed from

cosgp P = —nsing[sece Pr] -~ (n+ m)[seco P,)

C. Acceleration Caused by Solar Radiation Pressuie and
Operafion of Attitude-Contral System.

A nongravitational force that acts upon 1 spacecraft is
the pressure of the radiation from the sun. If [ is the
intensity of the solar radiation—i.e. the energy of the ra-
diation (in ergs) falling per sccond on an area of } cm?
peipendicular to the direction of the radiation--and ¢ is
the velocity of light (in cm/s), the pressure P iin dyn/em
exerted on a completely absorbing surface is given by

P (200

¢

F(SRP,AC) = F(SRP) * ¥(AC)

Equation (209) is derived from Einstein’s relationship
concerning the equivalence of mass and energy: a mass
M is equivalent to energy Mc*. If M is the mass of radia-
tion photons falling on a unit area in a unit time, then
the energy is equivalent to J: thus, J == Mc?. Because
phutons travel at che speed of light, their momentum is
equal to Mc, and hence ta J/c. IE the photons of total
mass M are absorbed by unit area in unit time, the rate
of change of momentum—i.e., the force per unit area,
which is equal to the pressure P—is thus J/c. For a per-
feet reflector of the radiation, the rate of change of
momentum is 2J/¢ because the photons strike the surface
with momentum J/c¢ and are reflected with equal mo-
mentum in the opposite direction; thus, P == 2J/¢ if the
surfuce is a perfeet reflecton,

At 1 AU, the order of magnitude of the pressure is
approximately 107 e/em’ for a highly reflective surface
exposed to the sun (Ref. 11, p. 77, The solar pressure
acceleration for Mariner 1V was 2.2 ¥ 10* com/s? at
injection (Ref. 12, p. 8.

The acceleration of a spa-ceraft from solar radiation
pressure and small forces cnch as gas deabs from the
attitnde control system, noncoapled attitude-control jets,
«te) is represented by

A A . . A
= [F(SHP) o U + F(AC) o Usp] Con + (8 (SRPy o &% « #(AC) » L] &0

+ [#(SRP) « £+ + #(AC) ¢ £51 8

or

¥(SRP,AC) = (s ¢ Uue) Car + (i s &0 Ko = i « £ €

where

(210)

(211)

n=[at b(f = Tacr) + ¢ (t — Tyo-)*} u {t — T.u,'x) - u(f — T.wz)] 4+ Aa -k %?TF[C + G’ (5.EPS) + AG] u* (t — Taer)
1 /4

1'Warner, M. R,, et al,, JPL internal document, Oct. 30, 1968,
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or, for the components,

.l'.h = I(J. - b, (‘ - T,\L'l) -~ (‘r(' = Tu 1)‘] [“ (‘ - Tu.n’ “\' - Tl'x)]

A,
mri,

-+ Ad, *+

1G, + G (5 EPS) + AG,  u* (t — Tuwe)

."'u = [“: e b:(' = Taa) ~ ¢ (' = Tac 1)"‘] [“ (‘ . T.u'x) - u (f -7 u‘.')]

- A“.- -+ ili‘_ﬂ_ [C, + Cl‘"' (AEPS) - AG‘] u‘ (' - T.;gr)

ULET

":lp = {ay s by (' =T~ C.(‘ - T.u‘x)"] [“ (' ~Tuw) —u (¢t — T.u'.’"]

¢y

+ Ad, ——i,—[c:, + Gy (A EFSY + AG, ] u* (i — T.up)

mr;,

The terms in these equations are defined as follows:

A

Usr = a unit vector directed from sun to
spacecraft (spacecraft roll axis)

& - - N

X* - a unit vector in spacecraft ¢+ X-axis
direction (spacecraft pitch axis)

A . . .
Y* a4 unit vedtor in spacecraft +oY-
axis direction (spacecraft yaw axis)

A A

l\',,-.ﬁ',\"‘ forms a right-handed, orthogonal,
sp.\ct'craft-ﬁ¥d coordinate systeny
thus, o » ". *

a.b,c,(where i+ rxy) = solve- for co-
cficients of low-{hrust acceleration
polynoriials, km/s?, km/s*, kin/s*

t = ephemeris time

T o .T ., — cpochs at which attitude-control ac-
celeration poly nomials are turned on
and off, respectively; epochs may be
specified in UTC, ST, or Al time
scales (not E.T.)

1fort :_2 T,u‘;

L (‘ - T.u.x) = {0 for t < T,.“ T =Ty

Ar = (04,,46,,A0,) = inpu? (a priori) accelzeation, km/s?
(value of each aai, i = 1,1y, will be
obtained by linear interpolation be-
tween input points on any time scale)

JA2 1 km? km'xg
ES 3 vk Sty X " emve——
' c 10r'm? 1031 x 10 s$*m?
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= solar radiation constant
= 1.383 X 10! W/km?
= 1.383 ¥ 10" ks,/s’

Ay = 1496 > 107 km (mean distance
earth-sun — 1 AL

¢ = 2.997925 < 10" hi/s [speed of light)

A, - nominal arca of spacecraft projected
onto plane normal to sun-spacecraft
line, m*

m = instantancous mass of spacecraft
rar = distance from sun to spacecraft

Taar = epoch at which acceleration from
solar radiation pressure is turned on
(becomes effective); epoch may be
specified in UTC, ST, or A1 time
scales {see Glossary for time scales
UTC and ST)

1 for ¢t > T.zp and if spacecraft is
in sunlight

0 for t < Tagp or if spacecraft is in
shadow

u* (‘ - T,.p) =

G, = solve-for effective area of accclera-
tion of spacecraft in radial direction
from solar radiation pressure di-
vided by nomina! area A,
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G, = solve-for effective area of accelera-
tion of spacecraft in direction of its
positive x-axis (along X* vector) di-
vided by A,

G, - solve-for effeclive area.of accelera-
tion of spacecraft in direction of its
positive y-axis (along Y* vector) di-
vided by 4,

4.EPS = earth-spacecraft-sua angle, rad

c=)
{

G, = solve-for derivatives of G,, G,,
and G, with respect to earth-
spacecraft-sun angle

AG,.AG,AG, — increments to G, G,, and G, ob-
tained by linear interpolation of
input points specified in any time
scale

A
The unit sun-spacecraft vector U,, is computed trom

UM (213)

where

r = rectangular coordinates of spacecraft relative to
center of integration, referrcd to mean earth
vquator and equinox of 1930.0

ry' - rectangular coordinates of sun relative to center of
integration €, referred to mean earth equator and
equinox of 1930.0

The spacecraft L. and %‘ unit vectors are obtained as
a rotation of the tangential T and normal N vectors through
the angle K (Fig. 31); i.c.,

A
X* cos K sinK 'f
Y* -sinK cosK &

The angle K is a given constant; that is, not solved for.

‘omputation, of the unit vectors T and N requires the
unit vector Uy, which is a unit vector from the space-
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Fig. 31. The angle X

craft to & reference body that orients e apacecraft
about the roll asis (sun-spaceeraft line). The reference
body may be a star, a plauet, or the moon. [f the ref-
erence body is a star, then

cos 8 cosu

[’},, — ] cos8 sina (215)

sind

where the right ascension a and declination 8 of the star
are referred to the mean earth equator and equinox of
1950.0. If the reference body is a planet or the moon (aor-
mally the carth),

o (1)

. Fp' —r
ﬁn T;':—:;T (216)

where ri’ represents the rectangular coordinates of ref-
erence body B relative to the center of integration C,
referred to the mean earth equator and equinox of 1930.0.

The unit normal vector &, normal to the sun-spacecraft-
reference-body plane (Fig. 32), is computed from

A A
Ue X Usr

A
N-—= A
U X Usp |

(217)
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§ = REFERENCE 80ODY
P = SPACECRAFT

CELESTIAL
- SPHERE

Fig. 32. Orientation of a spacecrdft relative
t6 sun, earth, and reference body

The unit tangential vector 4“, tangent to the sun-
spacecraft-reference-body plane, is

£=Rx 0.,

The EPS angle may be computed from

A A .
cos X EPS = —U,, o U4, Odeg <X EPS < 180deg

where ﬁ;, is computed from Eq. (216) using B = carth.

The acceleration of a spacecraft due to solar radiation
pressurce is computed whenever the spacecraft is in the
sunlight and its solar pancls have unfolded. The space-
craft is considered te be in the sunlight whenever the
physical central body (PCB) is the sun. When the PCB
is the moon or a planet, the spacecraft is considered to
be in the sunlight if it is not in the shadow of the PCB,
which is defincd by the shaded region in Fig. 33.

To determine when the spacecraft enters and leaves
the shadow of the PCB, the following ruantity is co.u-
puted:

D= =B o rpens| —7 (218)

ESYU ] ‘

where

r=|¥F| = radius of PCB
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/
/ S .
) =" SPACEZRAFT

Fig. 33. The parametor )

OUTGOING TRAJECTORY
' -
\?.:&FPP//,/‘T '
, ' SPACECRAFT
"pCo-p + 'rcw,w/,,«f’?n?\ U
s .
/ T tRChs , ‘

o~

o e
rca-p e rce-i 7 fﬂ”’
SPACECRAFT
il ,

....

INCOMING TRAJICTORY

Fig. 34. Spdcecraft moving into or
out of shadow of body

It is assumecd that, whenever D=0 and |Fap| >
| rs-pen |, the spacccraft is either entering or leaving the
shadow. To determine whether the spacecraft is enter-
ing or lcaving the shadow, D is computed with fpca-p
replaced by rpppp + Fpon.p; i,

D= ______r.tm‘n X (l‘m.-l + l.‘pcn-p) - (219)
, Fs-pon r

When (1) D’ > 0, the spacecraft is leaving the sliadow
of the PCB (if the dircction of integration is forward), as
shown by the “outgoing trajectory” in Fig. 34; when
(2) D’ < 0. the spacecraft is entering the shadow of the
PCB (if the direction of integration is forward), as shown
by the “incoming trajectory” in Fig. 34.

D. Acceleration Caused by Finite Motor Burns

The acceleration of the spacecraft relative to the bary-
center of the solar system in 1950.0 rectangular coordi-
nates caused by a finite motor burn, as opposed to an
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“instantaneovrs” motor burn (s¢ below), is given in Ref. 7,

F(MB) = aC (u(t ~ T — w(t—T)}  (220)

where
a = magnitude cf 1 (MB) vs time
ﬁ = unit vectar in direction of ¥ (MB) vs time
T, = effective start time of motor, E.T. value
of the solve-for UTC epoch, T, (UTC)
T, = cllective stop time of motor, E.T,
t = ephemeris time _
lfort>T7,
w(t — T,) = 1.,-T,

Ofort 2T,

The cffective stop time Ty is given by
Ty=T,+T (221

where T is the onlv solve-for burn time of the motor in
cphemeris time,

The acceleration magaitude a {in km/s?) is given by

_ Fw
mit)
- oo B+ Fgid Bbs By
- R l . l . l ) ‘
My~ Mt = o Myte = 2= MLt - M
(222)
where?

F(t) = magnitudc of thrust at time ¢ (poly-
nomial coeflicients F,, F,, F,, F,, and
F, are solve-for parameters)

111t should be noted that the coefficients

A"(, "1'2-‘.'"713”‘.'2,-:—&':‘

are actually the coefficients of a Taylor series; that is,
- _ » 1 » - l an l - I, l e 1 - _ 1 oeas
My = M, M, =g M, 38, =M LN, = L,

Tte coeflicients of the polynomial (Eq. 222) appear as in the
first of these equations because they are supplied in this form by
the Propulsion Division at JPL.
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m(t) = spacecraft mass at time ¢

C = 0.001 for F in newtons and mass in
kilograms

m, = mass of spacecraft at T, in ephemeris
time

MM M. M, = polynomial coefficients for propellant
mass flow rate (positive) at time ¢,
M) = M, + Mt + Mt + M¢#
{coeflicients are not solve-for param-
eters, but must be supplied)

t=ET. —T,(ET).s

where E.T. is seconds of ephemeris time from January 1,
O0h E.T, 1950.

A
The unit vector U of thrust is given by

/10, cos § cosa
A
U - U, | = | cos8 sina {223)
U, sin 3

where
« . Ar
a = right ascension of U

3 = declination of C‘

given by

a = o, +ad+at +adt +oatt

8 = ao + 8|‘ 1 82‘.‘ + 8]‘_’\ + 8." (224)

where the polynomial cocfficients are solve-for param-
eters. As an example of how these (ocfficients may be
solved for, a midcourse mancuver will be considered. In
this case, an impulsive velocity increment af is assumed;
a midcourse maneuver program computes the roll turns
and burn time: so that the computed AF is obtaincd by the
spacecraft. Given

azx
ar=1{ ay (225)
Az

qs

-
3
b
M




from the midcourse maneuver program, a priori values of
a, and 8, for use in Eq. (224) may be computed from

Ay

win a,. == THEENCVIDE

»
-~

A
sind, = —
S

where
As = [(ak) + (ag)? + (adp]n

The vector Ar obtained from the midcourse program
is referred to the true equator and equinox of date, and
must be rotated to the mean equator and equinox of
1950.0 before «, and 8, are computed:

Abyen. ~ (NA)T AR,

where N and A e rotation matrices given in Sections
V-E and -B. The remaining coefficients of Eq. (224) will
be put at zero and solved for.:

It should be noted that the aceeleration caused by
solar radiation pressure must be computed from m,. be-
fore a maneuver, from m(t) during a mancuver, and from
m(T,) after a maneuver. The value of m, for a given
mancuver is m(T.) from the previous maneuver.

If no data are taken during the maneuver, and the
duration of the maneuver is very short, it may be repre-
sented by instantancous changes in ar and af of the
spacecraft. A convenient set of mancuver parameters to
represent the change in state ar, Af of the spacecraft is

af | Ay (226)

(see Eq. 223), and ty (the duration of the maneuver).
The change in position Ar in terras of these parameters is

1
Ar = 3 ATty (227)

*'"Moyer, T. D, JPL internal document. Sept. 11, 1964,
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where #, = 0 for a spring-separation maneuver.**

At an instantaneous maneuver, the program has the
capability of reducing the area of the spacecraft by a
specificd amount AA. This area change would simulate,
for example, the expulsion of protective shrouds during
a spring separation. This reduced arca in turn will affect
the acceleration due to sviar radiation pressure,

E. Acceleration Caused by Indirect Oblateness

The indivect acceleration of the center of integration
caused by the oblateness of a perturbing body is gen-
crally ignored because the planets are separated by such
large distances that the nonspherical effect is negligible,
However, for the case where the carth is the center of
integration and the moon is the disturbing body (or
vice versa), an expressiop has been derived for the in-
direct acceleration: by using first-order oblateness terms,
this expression accounts approximately for the oblateness
of cach body (sce Ref. 8).%

1. Basic equations, In this subscction, an inertial Car-
tesian coordinate system R{X.Y.Z), in which the axes are
parallel to the 1930.0 mean carth equator and equinox
coordinate system, shall be defined. If one lets X, Y., and
Z. be the coordinates of a spacecraft of mass M., and lets
Xo Yoand Z, (i 1, -, m be the coordinates of n
hodies of nass M,, the indices 1 and 2 will refer to the
earth and moon, respectively. The foree potential between
any twa bodies shall be denoted by U, so that the com-
ponents of a force M, caused by M, are given by

Fy ',i\—“/ e (229)

t

Then, according to Newton's second law,

. | SR &
X M =TX

1#

(i=01--,mX->YZ (229
represents the equations of motion of the n —~ 1 bodies in
the inertial coordinate system.

If a parallel coordinate system r(xy,z) is defined as
ceatered in one of the bodies (say, M.), then

r,=r; =R; - R, (230)

Moyer, T. L JPL internal document, Sept. 11, 1964,
3Sturms, F. M., JPL internal documents, Aug. 10, 1964, Oci. 29,
1963, and Mar. 18, 1969,
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represents the radius vector from the central body to the
jth body. For the spacecraft, then, by use ot Egs. (229)
and (230),

X, ::\:u _::l
1o iU, 1 & iU,
= _ —td 9
&K, T M & X (231)

X.>Y.Z

and represents the acceleration of the body on the central
body. This term may be neglected, as it is very small.
Thus,

I &K, M &K,
j=c

l ’.l/"w' uJ 1 ;'(f‘\i 1 ;'[r¢»;
= o —— — e - e v

M, /X, ?:1(;\!“ X, M, ~X. )

P
X0 = 4,30 (232)
Because

I'.t” == —[‘,x,,

"L, U,
(-4\-, (.'.\.;
['l] ! b’;l

one obtains from Eq. (232), for the acceleration of the
spaceeratt,

01 l ;‘L’rm‘ . u ! (\‘[f“j l ;‘(7“,'.
R ¥ A SR ,}: (T‘T‘* M, 77X, )

o= Y2, {233)

Now the potential can be expressed as the point-mass
term plus a nonspherical term

_ GM.M,

U'} - Rn} + U'i] (234)

where
rip =R =[(Xi =X+ (Y, ~ Y))* + (2, - Z,)*]"
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It is desirable to include the effect of planetary oblate-
ness on the spacecraft when it is within a specified dis-
tance from the body; thus, U7, will be zero or nonzero
depending upon the distance from the body M;. For the
present, the nonspherical term will be taken to be zero
for all pairs of planets except the earth and moon:

_ GM.M,

U= —g—+1;, (235)

In practicc, the values of X;, Y;, and Z; are not used;
because they always appear as differences, the following
relations are substituted:

ri = R = ({3 — 0 + (g — ) + (30 — =)™

Equation (233) then takes on the form

. N Ta ) " X, — Xj X;
X [(,.\1,7‘- ; ’z‘:c.\t,(__F__J 7_)]

] ] o} D}
LA

. R Z’: ey,

M. rx. &~ ix,

j=c

Ly, .
+ -\—l——r;—'-r i = 1 if central Lody is moon

oy, LR Y3

i - 2 if central body is earth
(this term is zero 3f central
bady is neither earth or moon)

(236)

The terms in the first pair of brackets in Eq. (236)
correspond to the Newtonian point-mass acceleration
(see Eq. 203); the terms in the second pair of brackets
represent the (direct) oblateness perturbations. The lust
term is from the mutual attraction of the earth and mocn;
the derivation of this term will be dizcussed next.

2. Derication of term U’,. if one lets dM, and dM, be
differential elements of the mass of the carth and the
moon, respectively, one must define parallel coordinate
systems (£7.0) and (#,9'.{") centered in the earth and
moon, respectively, so that the ¢.m. of the moon is Jocated
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1
U = / / S 2 (3g* — D dM.aM,
My Juy T2

G {3 1
=/ / }T{-z‘(f—$’)’—§[(€—$’)’+(n—n')2+(C—C’)2]}dM1sz
Mz JMy Lo
——G 1 1 2 1 7”2 . 1 12 — 4 4 /4
- rizﬁ,,ﬁ,«f"‘z‘ﬂ“#%(f' ~g zt) 255+nn+€€}dM1sz (245)

The integrals of the product terms —2¢¢ + ' + {¢ are zero because the coordinate systems are at the centers
of mass. Regrouping of the remaining terms yields

1 3
v =SMe [Ty oyp_ 3y :2)] am, + S [e'z N T c'ﬂ):l M, (246)
rg2 My 2 Tia Jin 2

If one defines

L‘ (¢ + + ) dMy =3 (A+B+C) (9472)
L (€ ) A = (B +C) (247b)
/,, ()= (247c)

L G+ M, =T (247d)

where A, B, and C are the moments of inertia of the earth about the principal axes and I is the moment: of inertia of
the earth about the ¢-axis (similarly for the moon, by use of the primed rotations), then the indirect potential, if the
earth and moon are taken to be triaxial ellipsoids, is given by

U, =UQ = (248)

GM.M, [ (A+ B+ C —38I) + (A’ + B + C’ — 3P)
r$ 2M, oM,

This formulation of U, (i.e., in terms of moments of inertia) has the disadvantage that it leads to loss of significant
figures because of small differences of large numbers; however, by formulation of U, in terms of spherical harmonics,
this problem can be eliminated. In spherical harmonic form, Eq. (248) becomes (Ref. 13, p. 153)2

GM,M,

v, =
12 3
r12

{R:[—].P, (sin¢) + C2, P, (sin ¢) cos 26] + R? [—J4 Pi(sinB) + C’% P,, (sin B) cos 2\]} (249)

26Sturns, F. M., JPL internal document, Oct. 29, 1965.
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on the ¢-axis at a distance r,,. The distance of the mass
clements is then given by

= (r o+ & = &+ (o — ) + (E ~ O

o [1- M G o]

iz r’fz
(237)
Letting
§—¢
9= (238)
where
[— 2 —_ )2 -— g2
PPk Al ﬁn) T8 (239)
12
then Eq. (237) becomes
d? =r23, (1 — 2qo + o?) (240)

By Newton’s law of gravity, the element of force
potential is

dM,dM.
dU,, = _C_;_d‘__
and, by use of Eq. (240), this equation becomes

GdM.dM,
r

12

dU;g = (1 - 2q(l '+' (1:)"'./s (241)

The quantity raied to the —% power is the generating
function of a power series in o, with coefficients consist-
ing of Legendre polynomials in q, Pi(q); that is,

(1 - 2q a + a"’)"" =] + P](q)a + Pg(q)ﬂz + Pa(q)as SRR
Thus,

GdM,dM,

i2

du,, = [1+ Py(q)a + Py(q)a* + -]
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C orly, a < 1, and, because the series is convergent, one
integrate term by term so that

IM . dM,
U =/M /M G ¢ r e [1 4+ Py(q)a + Py(q)o? + +++]

12
=U@+ U + - (242)

For U9, onc obviously has

Uw = / GdMnsz —-C Bl,_M{ (243)
My Sy r

T2 12

which is just the point-mass term (see Eq. 235). Because

P(q)=gq
and
_¢—¢
9=

(Eq. 238), it follows that

dM,dM
oy = [, g 20
My Mz T12

= f f cE— ¥ amam,
Mz J My LET

However,

f tdM. =0
My

and

gdM, =0

My —_—

because ¢ and ¢ are measured from the centers of mass,
Therefore,

U =0 (244)

Now

Piq) =5 (8¢ — 1)
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thus,

1
u® =/ -'9-—2- (3q* — L)o*dM,dM,
My J My T2

3 1
=/ / ri{? - -—sle—r+a-—vr+¢- :’)2]} dM.dM,
My My L2
G 1 1 1 1
B TA L {(5 “Tr T ‘2) * (‘y B 5{’2) ~ 98¢ o + :c'} dMdM,  (245)

The integrals of the product terms —2¢¢ + ' + ¢’ are zero because the coordinate systems are at the centers
of mass. Regrouping of the remaining terms yields

3
U{g) - 9&/ [52 + ,,72 + tz —_ '3—<7]2 + cg):l dMl + G-Z:L [512 + 17:2 + ctz —_ '_'(’7'2 + ;rz):l sz (246)
15, My 2 Tie Jun 2
If one defines
f ($2+q2+§2)dMl=-é-(A+B+C) (247a)
My
/ (&2 + o2 + 3 dM, = —;—- (A" + B +C") (247b)
M, )
[ o+ eram =1 (247¢)
My
(* + ¢ dM, = I (247d)
M,

where A, B, and C are the moments of inertia of the earth about the principal axes and I is the moment of inertia of
the earth about the ¢-axis (similarly for the moon, by use of the primed rotations), then the indirect potential, if the
earth and moon are taken to be triaxial ellipsoids, is given by

U.=U@=

GM'le[(A+B+C—3I') N (A’+B’+C’—3I'):| 8)

3, oM, 2M,

This formulation of Ui, (i.e., in terms of moments of inertia) has the disadvantage that it leads to loss of significant
figures because of small differences of large numbers; however, by formulation of U3, in terms of spherical harmonics,
this problem can be eliminated. In spherical harmonic form, Eq. (248) becomes (Ref. 13, p. 153)

GM.M,

3
LET!

vy, =

{R2[—1].P; (sin¢) + C%, Py, (sin ¢) cos 29] + R2 [—]/, P, (sin 8) + C'% P, (sin ) cos 20] } (249)

%6Sturns, F. M., JPL internal document, Oct. 29, 1965,
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where
€2, = (C3, + Sz
C = (C + S
]2, Cas, S22 = oblatencss parameters for earth
1., C,, S, = oblateness parameters for moon
R, = mean radius of earth
R, = mean radius of moon

. = magnitude of the vector R from the
central body to the other body

where
R = Xeyios0.0 if earth is central body

R = —Xey1050.0 if moon is central body

where Xeyian0.0 i the earth-moon position vector in mean
earth equator and equincx of 1950.0 coordinates. The
vector R has spherical coordinates

¢ = geocentric latitude

6 = geocentric longitude —a,

B = selenographic latitude

A = selenographic longitude —o,

where a, and a, are defined by

sin 2a, = _L.
TS, TGy
cos 20, = Cuz

(83 +C2)™

hence,

a, = -;-tan" ('gzi)

sin 2 S
Ll =
S EET o

’
C22

2., = ————
N C R

hence,
1 ( S’”)
a; = —=tan! | ==
) c,

The angles ¢, 6, 8, and A and the earth-moon distance
#,, are computed from R as follows:

" = SENAR (250a)

R | =SBMKAR (250b)
\ A+ [ &)

These are the spherical coordinates of R in earth-fixed
and moon-fixed coordinates, respectively, where

A = precession-rotation matrix (Section V-B)

N = rotation matrix (Section V-E)

E = earth-fixed matrix (Section V-F)

K = mean obliquity matrix (Section V-D)

M = moon rotation matrix (Section V-I)

B = moon-fixed matrix (Section V-J)

S = transformation to spherical coordinates (Section
1V-B)

The indirect oblateness acceleration in 1950.0 coordi-
nates is then given by

#:o(IOBL) = (ENA)’L, ¥, + (BMKAY L, ¥, (251)

where the L matrices rotate to the body-fixed coordinate axes

cos¢ cos(d + a,)
L,=| cosé¢sin(d+ a,)

sin¢g .
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—sin (8 + a,) —~sin¢ cos (@ + a,)
cos (8 + a,) —sin¢ sin(f + a,)
0 cos 8
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and L, is the same, with 8 replacing ¢ and A + o, replacing 6 + a,. The transposed matrices continue the rotations
from the body-fixed to the 1950.0 coordinate system. The components of ¥, arc computed from

o oUY, o1 aus, .. 13Uy,
= or1s '7 rcos¢ 06 T e 09
yielding
/
%sin"’qb - % —9 cos? ¢ cos 26
. GA/I} R2 (252)
e rt, ") 0 + C%,| —Bcos ¢sin26
~8singcos ¢ —6sin ¢ cos ¢ cos 26
In a completely analogous way, one obtains
) sin? g — 5 —9cos? B cos 21
7, = 2 gy (258)
F: = i, 2}/, 0 + C/*| —6cos Bsin2:
~3sinBcos B —6sin B cos B cos 2A

where i = 1 if the moon is the central body and i = 2 if
the earth is the central body. The expressions in Egs.

(252) and (253) are in local “up-north-east” coordinates
(Fig. 35).

It should be noted that, if the moon is the central body,
the spacecraft acceleration M,/M, is as big (and opposite
in direction) as it would be if the earth were the central

z2' zb
PRIME
MERIDIAN
-t L} y'
%0 deg x
)
T ] b
$ORA \ ool
8+ a,
OR r+ a,
[ ]
EQUATORIAL
x, PLANE
Fig. 35. Up-riorth—edst coordinaté system
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body. The magnitude is determined by Egs. (252) and
(258); the reversal in sign occurs in the L,,L, matrices,
and enters through the R vector in Eq. (250).

F. Acceleration Caused by General Relativity

In 1915, Albert Einstein proposed the general theory
of relativity, of which his earlier theory of 1905 was a
special case. Basically, the general theory of relativity is
a theory of gravitation that supersedes the classical
Newtonian theory. In the great majority of cases of
interest, the two theories lead to essentially the same
results because the tew predictions the theory makes
about observable phenomena require an almost impos-
sible precision for any decisive measurement. In his
Sourcebook on the Space Sciences, Glasstone notes that
such precision has been realized for only three experi-
ments: (1) analysis of the orbit of the planet Mcreury
for a small relativistic precession of the perihelion of the
orbit, (2) gravitational bending of starlight passing by
the sun, and (8) the red shift of spectral lines emitted
and observed at two different gravitational potentials
(see Ref. 11, p. 854):

In oversimplified terms, the theory of gravitation based on
relativity involves two concepts, The first is the principle of
equivalence which asserts that the observable effects of
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inertia, i.e., the property of matter that causes it to resist
any change in its motion, and of gravity are indistinguish-
able, Einstein illustrated this equivalence '/ considering
an elevator falling freely in space, and supposing that a
passenger in the clevator releases a mass that he has been
holding. Since the clevator and the mass are falling at the
same .ate, the mass will not drop to the floor but will
remain suspended. If the elevator is completely closed and
the passenger is unaware of his su. oundings, he will be
under the impression that there is no gravitational force
acting on the mass. Suppose, however, that a constant
upward force is applied to the elevator, e.g., by means of
a rocket, the mass which has been suspended in mid-air
will drop to the elevator floor just as if it had been attracted
by gravity. But the effect is actually due to the inertia of
the mass and not to gravity,

The second concept is based on the postulate that all
bodies are located in a space-time medium (or con-
tinuum); this medism has four dimensions, three of
conventional geometrical space and one of time. As a
result of its inertia, a body will move on a geodesic (or.
geodesic line) that is the shortest distance that can be
drawn between two points on a three-dimensional sur-
face in the four-dimensional continuum. The presence of
any mass causes a distortion or curvature of space-
time and consequently distorts the geodesics in its
vicinity.

Let us consider two masses, and suppose for simplicity
that one is fixed, whereas the other is free to move, The
curvature of space-time by the fixed mass causes the
other mass to travel along a geodesic that moves it in
the direction of the first mass. To an observer, it would
appear, therefore, as if the fixed mass is attracting the
movable one by the force of gravity. What the moving
mass does, however, is determined by its inertia and by
the curvature of space-time, and not by the gravitational
attraction exerted by the fixed mass. A physical analogy
is provided by a sheet of rubber stretched across a frame,
with a mass placed in the center of the sheet. The mass
will then distort the sheet, and together they may be
regarded as reptesenting the curvature of space-time by
matter (Fig. 36).

L=

Fig. 35. Simplified schematic representation of
gravify in space-time system

/“

=

a7
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Another mass placed in the vicinity of the central mass
will move toward the latter, not as a result of attraction,
but rather because of the distortion of the medium in
which it is constrained to travel.

In the classical Newtonian theory of gravitation, the
mutual attraction of two bodies is the same regardless
of whether they are stationary or in motion relative to
one another. In relativity theory, however, there is a -
difference, and the magnitude of this difference increases
as the velocity of motion approaches that of light (see
Ref. 11, p. 855).

1. Relativistic equations of motion, This subsection
gives the relativistic n-body equations of motion that may
be used to generate the ephemeris for any celestial body
or spacecraft within the solar system (or to correct
ephemerides that were obtained without accounting for
relativity).?

In what follows, the term relativistic acceleration
means the perturbative inertial acceleration caused by
general relativity, which is added to the Newtonian in-
ertial acceleration; the term inertial acceleration indi-
cates that the acceleration is relative to the mean earth
equator and equinox of 1950.0 coordinate system.

The relativistic acceleration of a body relative to the
barycenter of the solar system consists of the accelera-
tion computed from Newton’s equations of motion plus
terms of order 1/c* caused by each perturbing body,
where ¢ is the speed of light. The relativistic accelera-
tion terms caused by the sun affect the motion of bodies
throughout the solar system. However, the terms caused
by a planet or the moon are significant only in a “small”
region (small in relation to the scale of the solar system)
surrounding the body, which is called the relativity
sphere; its center is located at the c.m. of the body. The
significant relativistic acceleration of the spacecraft is
caused by the sun and any “near” bodies (where “near”
implies being within the relativity sphere of a body). The
radii of the relativity spheres are given in Table 1.

Table 1 gives the theoretical spheres for each body
within which the acceleration due to relativity caused
by that body is significant and hence should be computed.
However, for programming efficiency, a body either con-
tributes rclativistically to the acceleration of the space-
craft for the entire trajectory or not at all. The bodies

27The equations were taken from Moyer, T. D., JPL internal docu-
ment, Jan 4, 1968.
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which are to be treated relativistically are specified by Table 1. Radii of relativity spheres®
input. This manner of treating relativity spheres clim-
inates any discontinuities in the integration of the equa-
. Y . . g £ . Mean distance Sun—planet Radius of
tions of motion due to relativity. Celustial p relativity
rom sun mass ratio
body a., AU / sphere rp,,
P kallp km X 108

In the early formulation of the gencral theory of rela-
tivity, the equations of motion for a massless particle Mercury 0.387 6,000,000 2
moving in the gravitational field of other bodies were

taken to be the equations of a geodesic. That is, the Yenus 0723 408,500 7
motion of a particle was obtained by solving the field Earth 1.000 333,000 9
equations for the metric tensor, which describes the geo- Mars 1.524 3,100,000 p
matrical properties of space and time, and by assuming

Jupiter 5.20 : 1,047 400

that the particle follows a geodesic curve in this geom-
etry. The actual method for determining the motion of Saturn 9.55 3,502 300
a system of n heavy bodies directly from the field equa-

u 19.20
tions was obtained for the first time by Einstein, Infeld, ranvs 22,500 200
and Hoffmann in 1938, This method, which is referred Neptune 30.1 19,300 200
to as the EIH approximation method, is, according to Pluto 39.5 360,000 50
Bazariski (Ref. 14, pp. 13-29), in principle, the only tool

Moon 1.000 27,100,000 1

for obtaining an approximate solution to the problem of
the motion of n heavy bodies in the general theory of

&Moyar, T. D., JPL internal document, Jan. 4, 1968,

relativity.

From Infeld’s equations of motion, after some computations and simplifications,?® the resultant equation for the
relativistic acceleration of body i “due to body j,” denoted by ¥,(}), is

o . _,u.;(l‘j"‘l‘i) 4 1 ~§i 2 6.‘; 2 4 . . 3 (l’i'—l‘ b2 1 .
ri(’)_-_r::’_{_c_z¢i_?¢l+(—c_) +2<'c— —Fhery = 202[ ) f] + 57 (r,-—r;)'r,}

Ty .
b B s — ) o (4 = )] (b — £) + — e L5 (254)
¢ r %, ¢ ! g i ' s 2c? Tis k
where The acceleration of body { “due to body j” is a function

‘ of the position and velocity of bedies ¢ and j and the
riy = coordinate Jistance between bodies #  positions of all other bodies, which contribute to the

and j Newtonian potential at bodies i and j and affect the accel-
(8:)% ($,)* = square of velocity of bodies i and j,  C¢ration of body j (terms 7 and 9 of Eq. 254). Although
respectively the effects of other bodies are included, all terms are

proportional to u; and hence ate attributable to the

¢1 = Newtonian potential at body i presence of body f. The effect of the mass of body i on

¢; = Newtonian potential at body j its own acceleration is contained in term 2 (its contribu-

tion to the Newtonian potential at body f) and in its

and contribution to the acceleratior: of body j (terms 7 and 9).
tm (F — r;) 28Moyer, T. D., JPL internal document, Jan. 4, 1968, and Khatib,

=3
/ ,,,;, L A. R, JPL internal document, Feb. 11, 1969.
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When it is desired to determine the relativistic inertial
acceleration of any body caused by the sun, a number of
terms in Eq. (191) are insignificant; it can be shown®
that the significant inertial acceleration of any body ¢
caused by the sun is given by

. [t . an o
r= _c% [(4¢ — %) + 4(r o i) 1] (255)

where

ps = gravitational constant of sun, km?/s?
¢ = speed of light, km/s

r, = heliocentric position and velocity vector of
body ¢ (with rectangular components referred

to a nonrotating coordinate system), km, km/s _

r.=_magnitude of r
§ = magnitude of ¥

¢ = Newtonian potential

If body i is a spacecraft, then

p=¢i =10+ 1L (256)

r 7 T“
where the second term is the contribution to the
Newtonian potential caused by any body which is rela-
tivistically turned on for the trajectory.

If body i is a planet P other than the earth,

¢p = L= (257)

r

If body i is the earth E or the moon M, then

=Mt KX

¢s ="+ — (258)
= B, BE

bu = + o (259)

2. Helioceniric ephemieris of a planet (oiher than
earth). The relativistic acceleration of a planet P (other
than the earth) relative to the sun is given by

¥ =Fp — ¥y (260)

2sMoyer, T. D., JPL internal document, Jan. 4, 1968,
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It has been shown?® that, because of the uncertainty to
which the value of the astronomical umit is known,
Eq. (260) simplifics to

where ¥ is given by Eqgs. (255) and (257).

3. Heliocentric ephemeris of earth-moon barycenter,
The relativistic acceleration of the earth-moon bary-
center B relative to the sun S is given by

¥ = T #(S) + o M)

1 .. 1
+ml‘u(5) + —

(262)

where E and M indicate the earth and moon, respectively;
#i(f) is the inertial relativistic acceleration of body i
caused by body f; and

*y
=— 263
p=— (263)

where ug and uy are the gravitational constants for the
earth and moon, respectively, in km?/s?. The accelerations
caused by the sun are given by Egs. (255) and (258) or
(259); those caused by the earth and moon are computed
from Egs. (254), (258), and (259). Again, it has been
shown® that Eq. (262) simplifies to

e . )
¥ = T Fe(S) + o ¥ulS) (264)

where ¥z(S) is given by Egs. (255) and (258) and #x(S)
is given by Eqgs. (255) and (259).

The relativistic acceleration of the earth-moon bary-
center could be computed directly from Egs. (255) and
(257) in terms of the heliocentric position and velocity of
the barycenter. However, the third significant figure
of the acceleration would be affected; therefore, it is
recommended that Eq. (264) be used.

4. Geocentiic ephemeris of moon. The relativistic
acceleration of the moon relative to the earth is given by

t§ = Fu(S) — ¥a(S) + Fu(E) — Fu(M) (265)

30,312foyer, T. D., JPL internal document, Jan. 4, 1968,
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where the first two terms are computed from Egs. (255),
(258), and (259) and the last two terms arc computed
from Eqs. (254), (258), and (259).

The accelerations in Eqgs. (261), (264), and (265) are
numerically integrated to correct the basic ephemeris
(as obtained from, c.g., an cphemeris tape) of a planet,
the moon, or the earth-moon barycenter.

5. Equaticns of motion for generation of a spacecraft
ephemeris. The acceleration of a spacecraft p relative
to the center of integration C (a planet, the moon, or the
sun), which is integrated to give thc spacecraft ephem-
eris, is.the sum of the usual Newtonian acceleration
and the following relativistic acceleration:

FS =1,(8) — ¥c(S) + Z’: Fulf) — Fo(n) (266)

The first two terms are the accelerations of the space-
craft and center of integration caused by the sun, com-
puted from Eq. (255). (The second term is zero if the
center of integration is the sun.) The third term is
the acceleration of the spacecraft caused by each “near
body” j, computed from Eq. (254). The j-summation, if
it exists, will include:

(1) A single planet.
(2) The earth and the moon.
(3) The planets Jupiter and Saturn.

The last term of Eq. (266) is the acceleration of the
center of integration caused by a near body n, computed
from Eq. (254). It is nonzero only when the center of
integration is the earth or the moon, in which case the
near body is the other of these two bodies. The Newtonian
potentials appearing in Eqgs. (254) and (255) are evaluated
from Egs. (256) through (259), as appropriate.

When the center of integration is the sun, its rela-
tivistic acceleration caused by the planets and the moon
(3.5 X 10-** km/s?) is ignored.

VIIl. Numeri¢al Integration of Equations of
Motion of a Spacecraft
As is the case with most differential equations arising
in practical applications, the equations of motion of a
spacceraft cannot be integrated in closed form. One

reason for this is that to integrate the Newtonian point-
mass acccleration (Section VII-A) in closed form, 6n
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constants are required, but only 10 arc known. There-
fore, discretc methods must be employed for solving
Eq. (191). In a discrete method, the solution of a differ-
ential cquation is computed at a discrete point ¢, To
advance the solution from ¢, to t,,,, if only information in
the interval [t,, t,..] is used, the method is a one-step
method. If information from steps preceding ¢, is used to
advance the solution, the method is a multistep method.

The most obvious disadvantage of one-step methods
is that no use is made of past information on the solution,
and many derivative cvaluations over [t,, %,..] are neces-
sary if high accuracy is desired, Multistep; methods have
the advantage of using already computed values for most
of their information; hence, the computational effort is
reduced. A disadvantage of the multistep method is that,
befor<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>